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Connectionist models have been applied to many phenomena in infant development including perse-
veration, language learning, categorization, and causal perception. In this article, we discuss the benefits
of connectionist networks for the advancement of theories of early development. In particular, connec-
tionist models contribute novel testable predictions, instantiate the theorized mechanism of change, and
create a unifying framework for understanding infant learning and development. We relate these benefits
to the 2 primary approaches used in connectionist models of infant development. The first approach
employs changes in neural processing as the basis for developmental changes, and the second employs
changes in infants’ experiences. The review sheds light on the unique hurdles faced by each approach as
well as the challenges and solutions related to both, particularly with respect to the identification of
critical model components, parameter specification, availability of empirical data, and model compari-
son. Finally, we discuss the future of modeling work as it relates to the study of development. We propose
that connectionist networks stand to make a powerful contribution to the generation and revision of
theories of early child development. Furthermore, insights from connectionist models of early develop-
ment can improve the understanding of developmental changes throughout the life span.
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Since the groundbreaking work of Rumelhart and McClelland in
the 1980s, there has been an increasing interest in and research on
the application of connectionist models to early human develop-
ment. Connectionist models are instantiations of theories about the
mechanisms that underpin particular behaviors. Building compu-
tational models allows for the exploration of the interaction of
numerous factors both internal and external to the organism that
typically contribute to a behavior, which often can be too complex
to specify through verbal theory alone (Shultz, 2003). These com-
putational models provide researchers with a number of ways to
explicitly test theoretical assumptions and develop novel and test-
able predictions.

However, in our view, for many developmental scientists the
contribution of models to an integrated understanding of develop-
ment is far from clear. Although a given model might provide
output that is similar to the behavior of infants, it often remains to
be seen whether the model’s results and the behavioral results
occur for the same reasons. For example, a network may simulate
effectively infants’ ability to discriminate between two objects that

differ along multiple features, but it is possible that the features
used by the network for discrimination are different from those
used by infants. Computational models have also been criticized
for using overly technical terms and notations that may be off-
putting to nonexperts (Klahr, 2004); for not being explicit about
the source of their starting states (Oakes, Newcombe, & Plumert,
2009); and for instantiating developmental changes through exter-
nal manipulation—for example, manually setting different learn-
ing rates to simulate the behavior of older and younger infants—
rather than allowing them to emerge naturally within the system
(Younger, Hollich, & Furrer, 2004). Further, in cases where the
modeler demonstrates comparable performance between a compu-
tational model and an infant without any further mechanistic
analysis, the contribution is minimal beyond what is apparent from
the behavioral data.

These issues highlight two key questions that are of interest to
developmental scientists. First, how can a model successfully
instantiate developmental change? Second, what does develop-
mental research gain from a computational model of empirical
data? In the current article, we discuss these questions with respect
to connectionist models, also known as neural network models or
parallel distributed processing (PDP) networks (Rumelhart, Mc-
Clelland, & the PDP Research Group, 1986), that model children’s
competencies in the first 2 years of life.

Why Focus on PDP Models?

Several types of computational models have been applied to
human development, the most prominent of which are connection-
ist or PDP models, dynamic systems models, rule-based models,
and Bayesian models. Our focus in this article is on connectionist
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models of infant development, for two reasons. First, PDP models
have an established history of success in simulating development.
From a broad perspective, an informal analysis by Shultz (2003)
showed that approximately 75% of the published developmental
computational models have been connectionist. These models have
accounted for some key developmental phenomena, such as trade-
offs in brain development (McClelland, McNaughton, & O’Reilly,
1995; O’Reilly & Munakata, 2000), nonlinear patterns of devel-
opment (Plunkett & Marchman, 1993; Rogers & McClelland,
2004; Rumelhart & McClelland, 1986), perseveration (Munakata,
1998; Stedron, Sahni, & Munakata, 2005), and the emergence of
semantic knowledge (Rogers & McClelland, 2004). Second, this
article focuses on connectionist models in the interest of depth
over breadth. Instead of providing a shallow survey of a variety of
approaches, we chose to examine how a single type of model can
be used to simulate developmental change in the first 2 years of
life. For reviews that take on a comparative approach of different
types of modeling frameworks, we refer the reader to articles by
Mareschal (2010) and Munakata (2006); a book edited by Spencer,
Thomas, and McClelland (2009) comparing connectionist and
dynamic systems approaches; the 2010 special issue of Trends in
Cognitive Sciences comparing connectionist and probabilistic ap-
proaches; and the 2003 special issue of Developmental Science on
connectionist and dynamic systems approaches.

Why Focus on Infancy?

This article focuses on the first 2 years of life for three reasons.
First, fewer empirical research tools are available to test very
young children, and many research questions must be asked indi-
rectly. Thus, process analyses and novel predictions generated by
computational models may be particularly valuable for behavioral
phenomena found in infancy. Second, connectionist models of
infant development are especially numerous compared to those of
other phases of development. An informal search in the PsycINFO
database of the titles and abstracts of published articles, books, and
book chapters that contain the terms connectionism, connectionist
network, connectionist model, PDP, parallel distributed process-
ing, or neural network model yielded 31 results when restricted to
infancy, 21 when restricted to preschool age, 9 when restricted to
school age, and 0 when restricted to adolescence. Finally, as
mentioned above, our interest was in providing a deep review,
which necessitated a limitation in scope. A focus on just the first
2 years of life allowed us to address the key issues in modeling
neural- and experience-based developmental changes.

Despite the focus on the models of early development, in our
view, the review presented here can benefit an audience beyond
developmental researchers. The modeling techniques that are pre-
sented can be used to model change across the life span; for
example, the approach to model neurogenesis can be reversed to
simulate neural death in the elderly. Similarly, the challenges that
have emerged in models of early development can be found in
nondevelopmental models as well; for instance, insufficient re-
search can make it difficult for a modeler to generate appropriate
training examples for a model, regardless of the age that is simu-
lated. Finally, the contributions that are outlined in this review are
applicable to a wide range of connectionist networks including
those in areas of clinical psychology (e.g., Siegle, Steinhauer, &

Thase, 2004), cognitive neuroscience (e.g., Plaut & Behrmann,
2011), and social psychology (e.g., Monroe & Read, 2008).

Overview of the Article

Our main goals in the article are to answer two questions: Why
should connectionist networks be used in the study of develop-
ment? How has development been modeled in these networks? To
answer the first question, we address the key theoretical contribu-
tions that connectionist models make: novel predictions, a concrete
instantiation of the theorized mechanism of change, and a unified
understanding of disparate experiments. Combined, these contri-
butions impact significantly the generation and revision of devel-
opmental theories. To answer the second question, we review the
two primary approaches to simulating development in connection-
ist models: focusing on the neural changes and focusing on the
changes in experience as the primary force behind development.
The neural-change-based approach emerges from a theory that
changes in the brain underpin developmental changes. Within this
approach, four specific neural changes have been modeled most
commonly: those in perception, information integration, mainte-
nance of information, and neural plasticity. The experience-based
approach emerges from a theory that exposure to the surrounding
environment underpins developmental change. This approach has
typically been modeled by varying the amount or type of experi-
ence over developmental time. We conclude the article with a
discussion of some shared challenges that these approaches face.

Our organization of the review into neural-based and
experience-based approaches to modeling development should not
be taken to suggest that there is a fundamental divide, such that the
two approaches are incompatible and only one can be used in a
given model or theory of development. The interplay between
experience and neural development has been well established
(Johnson, 2000, 2001; Quartz, 1999). Initially, cortical pathways
are very weakly specialized, such that broad responses to various
stimuli are observed in the brain. However, slight biases in pro-
cessing strengthen over time as different pathways selectively
process particular types of stimuli; thus, experience drives devel-
opmental changes in neural architecture and processing. In turn,
these changes in the brain can drive infants’ experience by con-
straining what infants attend to, process, and store. One example of
this type of interplay between neural changes and experience can
be seen in the early development of face processing. Scott, Shan-
non, and Nelson (2006) used event-related potential (ERP) mark-
ers of face processing to show that 9-month-olds exhibit more
specialized processing of human faces than of monkey faces,
which suggests that greater experience with the human faces alters
neural processing. In turn, this change in processing alters how
infants experience faces: Although 6-month-olds can discriminate
faces of monkeys, 9-month-olds cannot (Pascalis et al., 2005).
However, targeted experience with individuating monkey faces
between 6 and 9 months not only allows 9-month-olds to preserve
this ability (Pascalis et al., 2005) but also causes 9-month-olds to
show ERP markers of specialization in processing monkey faces
(Scott & Monesson, 2010). Thus, there are bidirectional influences
between the infants’ experience and neural change.

Although there is interplay between the neural- and experience-
based changes in development, we have chosen to separate our
discussion of these changes for two reasons. First, the implemen-
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tation of neural-based changes in a connectionist network is dif-
ferent from the implementation of experience-based changes. That
is not to say that networks can only implement one or the other;
both can be implemented a single model (e.g., Li, Farkas, &
MacWhinney, 2004). Rather, the ways in which one models neural
development and changes in experience are different. Our goal in
this article is to discuss how development can be modeled; because
the “how” is different for models that implement neural and
experiential changes, a clear review of each necessitates their
separation. Second, although some behavioral researchers have
moved toward an investigation of both neural and experiential
influences on development, as in the study of face processing
discussed above, others are still primarily interested in one or the
other. For example, researchers interested in infants’ perception
and categorization of animals have focused on the role of prior
experience with animals (e.g., Hurley, Kovack-Lesh, & Oakes,
2010; Kovack-Lesh, Horst, & Oakes, 2008). In contrast, those
interested in the development of infants’ memory capacity have
attributed changes primarily to neural development (e.g., Káldy &
Leslie, 2003, 2005). Therefore, a separate discussion of neural and
experiential changes can make modeling more intuitive to many
behavioral researchers, because their research may have a similar
focus on just one type of change. However, before we proceed
with the primary goals in this article, it is necessary to provide an
overview of connectionist modeling that will familiarize the reader
with the terminology and principles that are used throughout the
article.

Overview of Connectionist Modeling

Basic Principles

Connectionist models were designed with a neural inspiration
originally to solve cognitive problems. There are several basic
features that are characteristic of these models (Rumelhart, Hinton,
& McClelland, 1986). Connectionist systems operate in an envi-
ronment instantiated by the researcher: This is specified by a
particular distribution of training patterns that the network is
expected to learn. These systems contain a set of processing units
that can represent particular input stimuli (localist coding) or
features of those input stimuli (distributed coding). These units all
have some state of activation that indicates the current information
that the system represents. For example, a unit can represent a
whole image of a dog or a single feature (e.g., a tail), and the unit’s
activation could indicate that the image or feature is visible. Every
unit’s net input is transformed into an output via a prespecified
function, which is typically nonlinear. This output is passed on to
other units to which the given unit has outgoing connections. The
pattern of connectivity, or weight structure on the connections
between units, determines how outputs are propagated. Negative
and positive weights indicate inhibitory and excitatory connec-
tions, respectively. There is an integration rule that calculates the
net input the unit receives from other units based on the outputs of
those units and the weights on the connections; this rule typically
involves calculating the weighted sums of the excitatory and the
inhibitory inputs. There is an activation rule that calculates the new
activation of the unit based on the net input from other units in the
system. There is a rule that dictates how connections should be
modified as a result of experience. For example, the network may

employ Hebbian learning, in which the connection between two
units is strengthened when both are active. Alternatively, the
network may employ a supervised learning rule, in which weights
are altered to minimize error on future trials after feedback is
received on the current trial.

A crucial feature of connectionist networks that distinguishes
them from some other computational models—rule-based systems,
for example—is the fact that individual learning episodes are not
stored independently in the system (Rumelhart, McClelland, & the
PDP Research Group, 1986). Rather, all knowledge is superim-
posed over the same connections within the system, and these are
adjusted as the network learns the interdependencies in the input.
A pattern of connections that encodes knowledge typically takes a
long time to develop and can often be seen as representing long-
term memory (Shultz, 2003). In contrast, activations of specific
units change more rapidly and can often be thought of as repre-
senting working memory (Shultz, 2003).

We take the above properties to be our operational definition of
a connectionist network that was used to select models for review.
It should be noted that these properties can be satisfied in a variety
of ways. As mentioned above, learning rules for adjusting weights
can vary, so that some networks employ unsupervised Hebbian
learning (e.g., self-organizing maps), and others employ error-
correcting learning. Similarly, although most connectionist struc-
tures maintain a nonchanging architecture over the course of a
single simulation, some variants have a dynamic component in
which units are added throughout the simulation (e.g., cascade-
correlation networks). We elaborate on these variations in the next
section. Crucially, despite the variability, all of the networks
satisfy the above criteria.

When one examines connectionist networks in the context of
development, it is important to consider their ability to instantiate
three time scales: long-term developmental time of months and
years, smaller scale time of individual learning episodes, and
short-term activations during the performance of a particular be-
havior. Connectionist models can encompass all three (McClelland
& Vallabha, 2009; O’Reilly & Munakata, 2000; Thomas, McClel-
land, Richardson, Schapiro, & Baughman, 2009). The develop-
mental time scale can be represented by weights that gradually
change with experience (McClelland & Vallabha, 2009; Shultz,
2003) or by structural or parameter changes to the model that
simulate neural development (Sirois & Shultz, 2003). Individual
learning episodes can also be simulated with weight adjustment:
This provides continuity in the model by which discrete learning
instances add up to long-term changes. Finally, moment-to-
moment task performance is represented by the activations of
specific units (McClelland & Vallabha, 2009; Shultz, 2003). For
example, a child’s expanding vocabulary may be represented by
adding units to increase neural capacity, an individual case of
learning a word can be represented by adjusting weights between
units, and the child’s production of a word may be represented by
the activation of an output unit that represents that word. These
time scales are intertwined in networks: The current activation is a
function of the weights that have been developed over time, and
this activation leads to further weight changes (McClelland &
Vallabha, 2009). In terms of behavior, this can be understood as
infants’ prior experiences affecting their current actions and their
current actions being incorporated into their experiences.
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In general, the handling of time in a given connectionist network
reflects the theoretical commitments and the interests of the mod-
eler regarding the factors that contribute to a given behavior. For
example, Franz and Triesch (2010) theorized that experience with
movement and occlusion can drive infants’ performance in object
unity tasks. Accordingly, they instantiated an extensive experience
phase during which the network adjusted its weights as it learned
a set of training patterns designed to represent several months of
real-world experience. After this phase, it was trained on patterns
that represented the specific experimental occlusion events, and it
further adjusted its weights. In the test phase, the network’s unit
activations to the test stimuli were used as proxy for infants’
looking times. In contrast, French, Mareschal, Mermillod, and
Quinn (2004) theorized that categorization of cats and dogs in the
Quinn, Eimas, and Rosenkrantz (1993) study was driven solely by
the online learning in the experimental context. Therefore, the
networks’ weight adjustment during training reflected learning
only about the patterns that represented experimental stimuli. As in
Franz and Triesch’s simulation, unit activations to test stimuli were
used as a proxy for looking time. A comparison of these models
demonstrates that developmental time can be handled very differ-
ently by connectionist networks, depending on the theory adopted
by the modeler: Weight adjustment can reflect long-term learning
about daily experience or short-term learning about lab stimuli. In
both cases, the learning affects immediate behavioral responses,
which are represented by unit activations.

Interest in particular phenomena can also lead to an emphasis of
dynamics at a particular time scale. For some, the moment-by-
moment changes in behavior within a trial are important, whereas
others consider only the overall behavior for a given trial. As an
example of the former, consider Schlesinger and Casey’s (2003)
model of the classic Baillargeon (1986) object permanence exper-
iments. Schlesinger and Casey had specific predictions about the
relationship between object movement and infants’ attention, so
they were interested in the amount of looking to the left, right, and
center regions of the display instead of the overall looking to
consistent and violation trials, which was the outcome measure
used in the behavioral experiment. Accordingly, the model that
they implemented simulated changes in eye gaze direction within
a single test trial. This can be contrasted with a model such as that
of French et al. (2004), which used a single set of activation values
to represent the overall looking for a test trial. It is conceivable that
had French et al. been interested in the dynamics of looking within
a trial, such as scanning of animal features, they could have
implemented the model on a finer time scale.

The implementation of the three time scales—development,
learning, and activation—utilizes a single framework. Thus, al-
though many options exist for the specific implementation of
learning (e.g., weight adjustment can represent long-term learning
over months or years or short-term learning during a single study)
and of activation (e.g., activation could represent average trial
behavior or finer behavioral changes within the trial), the same set
of basic principles applies across all of them. Thus, different
implementations of time should not be perceived as divisive and
arbitrary. Rather, connectionist models unify our understanding of
development by demonstrating that the same mechanisms of dis-
tributed representation can give rise to moment-to-moment acti-
vations and to long-term developmental changes.

Common Model Designs

Connectionist modeling uses an unconstrained framework in
terms of model structure. That is, there are no specific require-
ments for the number of units, groups of units, the learning rule, or
the interconnectivity of the network. However, there are particular
network structures that have been used commonly to model cog-
nitive development. These are reviewed in this section and sum-
marized in Table 1. This is not intended to be an exhaustive review
of all possible modeling approaches, and a more detailed overview
can be found in Shultz (2003). It should be noted that, on the
surface, the unconstrained nature of connectionist architecture and
the numerous types of networks outlined below may imply that
there are no principled reasons for choosing a particular structure
to model a given phenomenon. However, some network structures
are more suitable to model certain tasks over others, due to the
features of the task or the theories about information processing
during the task; these alignments between structure and modeled
phenomenon are highlighted in the overview that follows.

A commonly used network architecture is the standard multi-
layer backpropagation network (Rumelhart, Hinton, & Williams,
1986). Other network types are often special cases of this network.
An example of this type of structure can be seen in Figure 1A. A
multilayer backpropagation network consists of input, hidden, and
output units. Hidden units are interim units between the informa-
tion received from the environment (pattern presented on the input
units) and the response that is produced (activity of the output
units). There may be a single layer of hidden units (a three-layer
backpropagation network) or multiple layers. As the network
learns the training patterns, the connections between units are
adjusted based on how well the activation of the output units
approaches the desired activation. That is, once the network has
activated the output units, it gets feedback that identifies the
correct, or target, response. On the basis of this concrete target, the
network adjusts the connection weights between all of the units in
a way that would minimize error on future trials. For example, if
a network is learning object labels, it may activate a unit that
represents a word after receiving input about an object. The net-
work would receive feedback regarding which label should have
been activated, and the connections would be adjusted in a manner
that would move the network in the direction of producing that
label. This can be representative of learning over the course of a
lifetime or over the course of an experiment. Backpropagation
networks are a general type that can be adapted to model a number
of tasks by adjusting what the input and output units code. For
example, they have been applied to tasks in which the infant has to
reach to a particular location, in which case the output units may
code object locations (e.g., Munakata, 1998), or to tasks that assess
categorization, in which case output units may code global and
basic categories (e.g., Quinn & Johnson, 1997). Thus, the back-
propagation network is often chosen when an explicit response,
such as a reach location, is expected from the system.

A special case of the multilayer backpropagation network that
has been commonly used to model infant habituation studies is the
encoder network, also known as an autoencoder (Ackley, Hinton,
& Sejnowski, 1985; Rumelhart, Hinton, & Williams, 1986), which
is shown in Figure 1B. In the encoder network, the input and
output units code the same set of features (specified in the figure
by similar shading of input and output units), and there are typi-
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cally many fewer hidden units than input and output units. The
network is provided with input patterns and is trained to reproduce
the same patterns on the output units. In this process, the network
must form a compressed representation over the hidden units
because those units are few in number. A primary reason for the
use of an encoder network is to model habituation studies, because
the network aligns itself with theoretical accounts of habituation
(Mareschal, French, & Quinn, 2000; Mareschal, Quinn, & French,
2002). One popular way to conceive of the habituation procedure
is that infants perceive a stimulus, construct an internal represen-
tation of it, and compare that representation with what is available
in the environment (Cohen, 1973). If a mismatch occurs between
what is expected and what is observed (e.g., when a new stimulus
is presented to the infant), attention is increased, but if there is no
mismatch (e.g., when the stimulus is familiar), attention remains
low. Similarly, the model is presented with an input pattern that it
then re-represents on the output units. The output units’ activations
are compared to the target activations (identical to the input),
which generates error. Error is high in the model when there is a
mismatch, comparable to longer looking for infants. Encoder net-
works present a single input pattern per trial. As a result, they are
particularly useful for modeling habituation tasks in which what
the child experiences within a trial does not change (e.g., the child
sees an image that does not change throughout the trial). However,
they would not be appropriate for situations in which the moment-
to-moment dynamics within a given trial are of interest.

Habituation has also been modeled with simple recurrent net-
works (SRNs; Elman, 1990), an example of which is shown in
Figure 1C. These networks are more useful than encoders for

situations in which the child experiences changing information
within a given trial (e.g., the child sees moving objects). These
networks have a simple form of memory enabled by context units
that store the hidden unit activation from one time step and feed it
back into the hidden units on the next time step. Thus, the internal
representation of the input at a given time point is influenced by
the representations of the prior inputs. The task of the model is to
predict the next input given the current activity of the input and
context units and, based on the feedback about the prediction, to
adjust its weights to make more accurate predictions. For example,
on the basis of an object’s current and previous locations, the
network may predict the object’s location on the next time step
(e.g., Munakata, McClelland, Johnson, & Siegler, 1997; Rakison
& Lupyan, 2008). This prediction task is appropriate for modeling
habituation, because there is a comparison between the internally
generated prediction and the external evidence—just as with en-
coder networks—that generates an error signal that is comparable
to infants’ increased attention. However, because SRNs predict the
upcoming input within a trial, they are more useful than encoders
for modeling within-trial dynamics.

Developmental phenomena have also been modeled with auto-
associator networks (Kohonen, 1977; Rumelhart, McClelland, &
the PDP Research Group, 1986). An example of this type of
network is shown in Figure 1D. These networks consist of a single
set of fully interconnected processing units that serve as both the
input and the output; thus, the input ultimately is associated with
itself. Processing occurs over multiple cycles during which the
network settles into a stable activation state; this adds a temporal
component to the task. The settling of these networks has been

Table 1
Overview of Network Types Typically Used in Connectionist Models of Infant Development

Network type Common features Typical uses Example

Multilayer backpropagation
network

Units organized into input, hidden, and output
layers. Output compared to the target, and
weights are adjusted according to the error.

Adaptable to any task by adjusting
what the output units code

Quinn & Johnson
(1997)

Gasser & Smith (1998)

Encoder network Special case of the multilayer network in which
input and output units are identical. Network
trained to reproduce the input on the output
units via a compressed hidden unit
representation.

Habituation studies Mareschal et al. (2000)
Westermann &

Mareschal (2004)

Simple recurrent network
(SRN)

Input and output units are identical; network
predicts the next input based on the current
one. Network has a form of memory via the
context units that preserve the hidden unit
activity from the previous time step.

Habituation studies with a temporal
component

Elman (1993)
Munakata et al. (1997)

Auto-associator network Network has a single set of interconnected units
that act as both the input and output units.
Network settles on an activation pattern over
multiple processing cycles.

Tasks in which responses occur
over time

Sirois et al. (2000)

Self-organizing map Grid of units in which the information is
organized topographically such that units next
to each other respond to similar inputs.

Tasks where the similarity among
the items in the input must be
discovered; modeling the
topographic organization of
certain cortical areas

Cohen et al. (2002)
Mayor & Plunkett

(2010)

Cascade-correlation
network

Network has input, hidden, and output layers. Habituation tasks using encoder
and SRN variants; instantiating
synaptogenesis through hidden
unit addition

Shultz & Bale (2001)
Hidden units are added throughout training until

the target outputs are approached.
Shultz & Cohen (2004)

Weights trained in successive phases.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

228 YERMOLAYEVA AND RAKISON



related to the processing dynamics in a typical habituation exper-
iment at the level of looking time (Sirois, Buckingham, & Shultz,
2000). The network requires some number of cycles to settle on a
stable activation state when the habituation stimuli are presented.
This number is representative of the amount of time that an infant
requires to habituate, or the amount of time it takes the infant to
form a stable internal representation of the stimuli. In the test
phase, the network takes more cycles to settle after being presented
with a novel item than a familiar item, because the former is
inconsistent with the statistics of the habituation items. Similarly,
infants look longer at novel than familiar items because the former
are inconsistent with their internal representation. Researchers
interested in the way in which habituation unfolds over time may
opt to use auto-associators because of this coupling between set-
tling cycles in the model and processing dynamics in infants.
However, auto-associators do not generate an internal representa-
tion of the information, so they may not be as useful when
researchers are interested in the way that similarity relations be-
tween stimuli drive internal representations.

Another common type of architecture used to model develop-
ment is the self-organizing map (Kohonen, 1982), which is shown
in Figure 1E. These networks form a topographic organization of

the input across a two-dimensional map of units. Units in the map
compete to respond to inputs: Winning units, those with the
strongest response to the input pattern, become specialized in
responding to that input pattern through weight adjustment. Neigh-
boring units get their weights adjusted in the same direction, such
that they become specialized in similar input patterns. As a result,
nearby units come to respond to similar input items, which creates
a topographic map of the input stimuli. This is designated in the
figure by graded shading: The unit with the darkest shading
responds most strongly, and neighboring units respond more
weakly. On this map, similar items are represented as closer to
each other than are dissimilar items. For example, in a model of
speech perception, units that are near each other may respond to
similar phonemes. The learning that occurs in these types of
networks is not based on error correction, and it is considered
to be representative of long-term learning of statistical regular-
ities in the real world (O’Reilly & Munakata, 2000). Self-
organizing maps can be effective for representing the topo-
graphic organization of the visual cortex, auditory cortex, or
somatosensory cortex (Shultz, 2003). Thus, modelers typically
choose this type of network when they are interested in two
things: how the similarity structure of the input drives the
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Figure 1. Common connectionist network designs. Units enclosed by a dashed line represent banks of units.
Arrows between banks of units represent full connectivity; that is, each unit in one bank is connected to every
unit in the other bank. (A) Multilayer backpropagation network with 6 input units, 2 hidden units, 3 output units.
(B) Encoder network with 4 input and output units and 2 hidden units. Shading represents the fact that input and
output units code the same information. (C) Simple recurrent network with 4 input and output units, 2 hidden
units, and 2 context units. Shading represents the fact that input and output units code the same information, and
the dashed arrow to the hidden units represents the fact that the context units feed in an exact copy of the previous
activation and that the connection is not trained. (D) Auto-associator network with 5 units. The system can
receive external input and produce external output. Units feed activation to all other units and themselves. (E)
Self-organizing map with 3 input units and a map of 25 units. Shading represents the topographic organization
of the map such that one unit responds strongly to the input and neighboring units respond weakly. (F)
Cascade-correlation network with 4 input units, 3 layers of hidden units, and 2 output units.
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formation of internal representations, and how these represen-
tations can be arranged in a neurally plausible manner. How-
ever, the complexity of the similarity relations that can be
represented is limited because the information is represented on
a two-dimensional surface. Thus, this approach may not be
useful for problems that involve high-order similarity relations.

The final type of network that has been widely used is the
cascade-correlation network (Fahlman & Lebiere, 1990), shown
in Figure 1F. This network type is similar to a standard backpropa-
gation network in that it has input, hidden, and output layers.
However, it has one crucial difference in that its architecture is
dynamic: New hidden units are added to the structure to reduce
error throughout training. This contrasts with the other networks
that have been discussed, because their architecture remains con-
stant throughout the simulation. A cascade-correlation network
alternates between two weight training phases: training input to
hidden unit weights and training hidden to output unit weights.
Training is continued until the output units’ activations are within
some threshold of the target activations. Encoder networks can be
built in the cascade-correlation fashion such that the input and
output units are identical to those in a regular encoder network, but
there is additional hidden unit recruitment throughout training.
Thus, cascade-correlation networks can also be used to model
habituation studies. Some researchers (e.g., Shultz & Bale, 2001)
have argued that cascade-correlation networks have an advantage
over standard backpropagation networks because the former re-
quire fewer trials to train; therefore, the cascade-correlation net-
works are more comparable than standard encoder networks to the
training typically received in an infant behavioral experiment.

This section provides only a brief overview of the various
network structures available to modelers. These structures are
infinitely adaptable from their general form. For example, model-
ers may link several self-organizing maps together in a hierarchical
fashion to simulate visual processing at different levels of speci-
ficity (e.g., Cohen, Chaput, & Cashon, 2002). The flexibility of
connectionism allows such modifications to be made, and this can
enable modelers to instantiate theories about mechanisms of de-
velopmental change more effectively.

This section provided an outline of the basic terminology and
principles of connectionist modeling. In the following sections we
address our primary goals in the article: to discuss why these
networks should be used to study development and to demonstrate
the way in which they have been applied in that field.

The Benefits of Connectionist Modeling

As we have discussed, behavioral researchers who study child
development are often hesitant about the benefits of connectionist
networks. One criticism of the value of modeling is that models do
not advance our understanding of a behavior because they simply
replicate it (Sloman, 2008). However, we propose that connection-
ist models are indispensable to developmental research because of
the contributions they make to theory building. These models
make three primary contributions to research on development:
They create novel testable predictions, they instantiate the hypoth-
esized mechanism of change, and they create a unified framework
for broader understanding of early developmental change (Mare-
schal, 2010; McClelland, 2009; McClelland & Rumelhart, 1986;
Shultz, 2003). The ultimate goal in behavioral experimentation is

not to map out infants’ failures and successes in individual tasks.
Rather, those individual behavioral experiments are building
blocks for the formulation of broader theories about development.
In our view, these three contributions of connectionist models can
be critical for the construction and evaluation of such theories.

Novel Developmental Predictions

Connectionist models can make new predictions that are either
task related or developmental. Task-related predictions concern the
expected results of a new task or a new outcome measure applied
to a current task. Developmental predictions concern the expected
behavior at an age that has not yet been tested. Because our focus
is on modeling development, below we discuss two examples of
developmental predictions that have been confirmed behaviorally.
A more representative list of confirmed developmental and task-
related predictions, found in Table 2, demonstrates that connec-
tionist models have a history of making predictions that have been
supported behaviorally in a variety of domains.

An example of an empirically supported developmental predic-
tion was generated by Colunga and Smith’s (2005) simulation of a
noun generalization task. The model predicted that children who
are in the initial stage of word learning would extend labels of
nonsolid test items but not of solid test items. This prediction was
based on the ability of networks with no vocabulary training to
extend labels only for nonsolid objects, a behavior that was due to
the similarity among training patterns. Representations of nonsolid
items of the same material clustered closer together than did
representations of nonsolid items of the same shape, whereas
representations of solid items of the same material were as closely
clustered together as representations of solid items of the same
shape. Thus, without any vocabulary training, the network was
able to extend labels on the basis of initial pattern similarity. The
implication of this prediction was that visual similarity of nonsolid
items of the same material can support generalization, but vocab-
ulary exposure is needed for shape-based generalization to emerge.
Colunga and Smith (2005) administered the noun generalization
task to a sample of younger children and found empirical support
for this prediction: Children who had not yet learned many words
could generalize the names of nonsolid items by material.

Another clear example of a network that produced a novel
developmental prediction is Munakata’s (1998) simulation of per-
severation in the A-not-B task. Development was modeled by
strengthening recurrent connections in the network, and the devel-
opment of perseveration was plotted by measuring the proportion
of correct reaches at different connection strengths. This plot
revealed that perseveration followed a U-shaped path, such that
networks with the weakest and the strongest recurrent weights
perseverated less than networks with midlevel recurrent weight
strength. This result was due to the role of recurrent weights in
building a response bias to the initial hiding location (A). When the
recurrent weights were very weak, they did not allow the network
to develop an A bias even after multiple presentations of A: Thus,
the youngest networks with the weakest recurrent connections
were not highly likely to respond to A. As the recurrent weights
increased, the activation of the A location persisted over a delay,
which led the network to develop a bias to perseverate at that
location. Finally, recurrent weights became strong enough to retain
the activation of the new hiding location (B), which decreased
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perseveration. The network generated a new prediction regarding
the presence of a U-shaped developmental trajectory for perse-
veration (see also Thelen, Schoner, Scheier, & Smith, 2001, for a
similar U-shaped prediction for perseveration based on dynamic
field theory). The prediction was supported by Clearfield,
Diedrich, Smith, and Thelen (2006), who showed that 5-month-old
infants did not perseverate in the A-not-B task, whereas 7- and
8-month-olds did perseverate.

The developmental predictions made by an existing network can
serve three purposes. First, those that are confirmed behaviorally
provide additional—although not conclusive—evidence that the
network is a faithful representation of the infant’s behavior. A
simulation typically is built to fit an existing set of data, and the
simulation has far greater credibility if it can predict an indepen-
dent set of data. This, in turn, strengthens the verbal theory that
inspired the simulation. Crucially, in contrast to predictions purely
based on verbal theory, a prediction that emerges from a simula-
tion is based on a mechanism that is instantiated and that has been
demonstrated to successfully produce the behavior in question.
Second, predictions could be beneficial to developmental scien-
tists, because they are an efficient way to inspire new behavioral
experiments. For example, it is costly in terms of time and money
to test a large number of age groups behaviorally to plot a con-
tinuous developmental trajectory. As an alternative, this task can
be simulated in a model through repeated testing as some devel-
opmental parameter is varied. Based on the network’s prediction of
the trajectory, only the key age groups have to be tested. For
example, based on Munakata’s (1998) predictions, it was neces-

sary to test a younger age than the age at which infants have been
shown to perseverate to confirm the U-shaped trajectory.

A final purpose of new predictions is their contribution to the
evaluation of different theoretical accounts. Shultz and Bale
(2001), for example, found that their simulation of the Marcus,
Vijayan, Bandi Rao, and Vishton’s (1999) rule-learning experi-
ment showed a gradation of error to different types of test items:
Error increased for test items as their phonological similarity to the
training items decreased, even though all test items followed the
learned rule. This performance suggested that infants should also
display graded patterns of looking if they were tested with items
that varied in their similarity to the training stimuli. A rule-based
account would have predicted equal looking to all test items
regardless of similarity, because looking would be based only on
whether the item follows the trained rule and any phonological
variability would be ignored. These contrasting predictions could
be tested empirically to determine which theory is supported by
behavioral data; however, this remains to be carried out. Thus, in
addition to saving the resources of behavioral researchers, predic-
tions based on connectionist modeling work can advance existing
theories of behavioral phenomena.

Concrete Instantiation of the Underlying Mechanism

A second contribution of models to developmental research is
the instantiation of the theorized mechanism. The observed behav-
ioral results are often explained through a verbal theory that
describes the underlying mechanism. However, behavioral data

Table 2
Representative Sample of Articles That Have Made Concrete Predictions Using a Connectionist Model

Study Domain Prediction type Specific prediction

Colunga & Smith (2005) Label generalization Developmental Children with small vocabularies should be able to extend
labels of nonsolids but not of solids

French et al. (2004) Categorization Task related Asymmetry in infants’ cat and dog categorization can be
reversed by using a cat category with a wide range of
features and a dog category with a narrow range

Mareschal et al. (2002) Categorization Task related Asymmetric retroactive interference when learning cat
and dog categories sequentially such that learning dogs
first interferes with subsequent cat learning, but
learning cats first does not interfere with subsequent
dog learning

Munakata (1998) Perseveration Developmental The development of perseveration in the A-not-B task
follows a U-shaped trajectory such that initially babies
do not perseverate, then they go through a period of
perseveration, and finally they once again do not
perseverate

Quinn & Johnson (2000) Categorization Developmental Infants’ ability to form global-level categories emerges
prior to their ability to learn basic-level categories

Rakison & Lupyan (2008) Learning correlations Task related Infants will learn correlations between a label and the
moving parts of an object in a context when both are
correlated with global motion. When parts, bodies, and
labels are correlated but global motion is not, infants
will learn the correlation between the parts and the
body

Schlesinger & Casey (2003) Object permanence Task related In Baillargeon’s (1986) classic car study on object
permanence and solidity, infants should spend the most
amount of time looking at the center of the display,
followed by the right, and then the left

Note. All predictions reported here have been confirmed behaviorally by the authors, except for Munakata’s (1998) prediction, which was confirmed by
Clearfield et al. (2006).
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alone cannot confirm that the theorized mechanism is, in fact,
correct. Although new predictions can be generated and tested
based on the theory, it is only by building the mechanism that
researchers can show that it produces the expected behavior. The
construction of a connectionist simulation can provide this explicit
test of the theory, because it requires scientists to declare and
evaluate their assumptions (Mareschal, 2010). If the hypothesized
mechanism as instantiated in the network does not yield results
that are similar to the behavioral data, it is likely that the mecha-
nism is incorrect. The processes of developing a verbal theory and
instantiating that theory in a connectionist network could be
thought of as reductionism and reconstructionism, respectively
(O’Reilly & Munakata, 2000). The former takes the behavior and
identifies the components that underwrite it. The latter takes those
components and puts them back together in an attempt to show that
they do, in fact, result in the behavior in question. Thus, a network
instantiation can be particularly useful to behavioral researchers
for verifying a verbal theory about the underlying mechanism.

An example of the use of a connectionist model to verify a
theorized mechanism comes from the work of Mareschal, Plunkett,
and Harris (1999) on infants’ expectations about occluded objects.
They theorized that the integration of information from two neural
processing streams, one dedicated to object identity and one to
location, explains the finding that looking-time measures show
earlier development of object permanence than do reaching mea-
sures because the former depend only on object location informa-
tion, whereas the latter depend on the integration of identity and
location. It is possible to compare the time course of the neural
development of the two streams to the time course of the behav-
ioral development of object permanence. If neural integration
occurs close in time to behavioral changes, this may suggest that
the two are related. However, a concrete construction of the
mechanism in a simulation is necessary to establish the causal
relationship between integration and behavior, which is exactly
what was done by Mareschal et al. They constructed a connec-
tionist network that contained two processing streams, one that
encoded object identity and one that encoded object location. The
network could provide responses based on location (akin to
looking-time measures) or based on an integration of location and
identity by feeding information about location and identity into a
shared set of hidden units (akin to reaching measures). The model
showed that expectations about occluded objects based on inte-
grated information took longer to develop than responses based on
location only due to the additional time required to adjust weights
that represent a combination of object identity and location. This
result replicated the behaviorally observed lag between looking
time and reaching measures and provided critical support for the
proposed theoretical explanation.

Theoretical explanations are not always supported by connec-
tionist simulations. In fact, the benefit of instantiating the mech-
anism in a model is that it can point out areas in which the verbal
theory fails to explain the behavior. One example of a model that
contributed to theory revision is Schlesinger and Young’s (2003)
connectionist model of Baillargeon’s (1986) study of object per-
manence and solidity (for a further investigation of similar
violation-of-expectation experiments from the dynamic field the-
ory perspective, see Schöner & Thelen, 2006). In the behavioral
experiment, infants were habituated to a car that moved along a
partially occluded track. In the test trials, a block was placed either

on or next to the track and subsequently occluded. Infants looked
longer when the car continued to roll along the same trajectory
when the block was on the track than when it was behind or in
front of the track. Baillargeon (1986) concluded that infants rea-
soned that one object cannot pass through another and that infants
had a notion of object permanence because they could remember
that the occluded block was still there. Schlesinger and Young
(2003) theorized that performance in Baillargeon’s task could be
based solely on predictive learning during the experiment (i.e.,
learning to anticipate object movements and locations) and that
prior knowledge about solidity and object permanence was unnec-
essary. In accordance with this theory, they constructed an SRN, a
network that learns through prediction, and trained it only on
patterns that represented behavioral stimuli without endowing it
with prior knowledge. In Simulation 1, Schlesinger and Young’s
model showed similar behavior to infants: It exhibited higher error
to a test trial in which the block was on the track than one in which
the block was in front of the track. However, a follow-up simula-
tion contradicted the behavioral findings: The network exhibited
higher error when the block was behind the track than when it was
on the track. In contrast, in Baillargeon’s study, infants’ pattern of
looking was the same when the block was in front and behind the
track. Schlesinger and Young concluded that a predictive mecha-
nism was insufficient to explain behavioral data and that the theory
of infants’ behavior needed revision to take into account prior
knowledge.

A final example of a connectionist model that contributed to
theory building through the instantiation of the hypothesized
mechanism is the work of Colunga and Smith (2005) on novel
noun generalization for solids and nonsolids based on shape and
material, respectively. The theoretical account for the development
of generalization emphasized the role of the statistics of the lan-
guage to which children are exposed: the correlations between
solidity, shape, and material for nouns in the language were
theorized to drive performance in the novel noun generalization
task. Differential performance in the task has been observed for
English- and Japanese-speaking children: The former extend labels
for both complex and simple solids based on shape, whereas the
latter extend labels for complex solids based on shape and labels
for simple solids based on material (Imai & Gentner, 1997). As a
test of the verbal theory that children’s native language influenced
their behavior, a connectionist network was constructed, trained
on the noun regularities of either English or Japanese, and com-
pared to the behavioral data of English- and Japanese-speaking
children. In the test phase, the network exhibited the same behav-
ior for both languages: It generalized labels for complex solids
based on shape and for simple solids based on material. This
matched Japanese but not English behavioral data. However, when
the noun regularities in the English training set were supplemented
by count-mass syntax information (information that is not present
in Japanese), the network accurately simulated novel noun gener-
alization for both languages. Thus, the initial theory had to be
revised to include not only the statistics on how nouns correlate
with solidity, shape, and material but syntactic data as well. This
addition may not have been apparent from the behavioral data and
a corpus analysis of each language alone. Although highly similar,
Japanese and English have slight variations in their noun distribu-
tions. Without a concrete instantiation, it may have been hypoth-
esized that these variations could be sufficient to generate the
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behavioral differences between English- and Japanese-speaking
children.

Taken together, these three examples demonstrate the impor-
tance of a model instantiation of the proposed mechanism for
theory development. In many cases, it is difficult to confirm a
verbal theory solely by behavioral evidence. Verbal theories can
make predictions for behavioral performance, but confirmation of
those predictions does not indicate that the hypothesized causal
relationship exists. It may be the case that the theory has missed a
critical neural process that operates in concert with those included
in the theory. However, when all proposed neural structures and
processes are explicitly instantiated in a model, one can see if they
produce the behavior in question. This provides powerful support
for a theory or highlights a need for revision.

Creation of a Unifying Framework

A final contribution that models can make to developmental
psychology is to create a unified framework for understanding
development. This can occur on two levels. At the lower level, a
single connectionist architecture can be applied to model several
behavioral results, underlining their commonalities. At the higher
level, different models that all obey the principles of connection-
ism can highlight broader aspects of development that are shared
across domains.

Connectionist models have a history of successfully integrating
individual experiments within the same domain. This type of
integrated account of performance contributes to theory building
by joining disparate pieces of empirical data into a unified under-
standing of a behavioral phenomenon (Sun, 2008). Several labs
may study a particular behavior and generate a number of findings
in different experimental contexts (e.g., infants’ categorization
studied by Mandler, Bauer, & McDonough, 1991; Quinn & Eimas,
1996; and Rakison & Butterworth, 1998; among others). Typi-
cally, it may be difficult to compare across these studies to for-
mulate broad conclusions about the behavior. However, if the
results of multiple studies can be simulated within the same
network, this suggests that a common underlying mechanism may
underpin them. Rogers and McClelland (2004) accomplished this
in a model of the development of semantic cognition. They used a
single basic architecture in their simulations in which the network
was provided with an item and a context and was trained to output
the appropriate features of the item. With only minor variations of
the architecture or training that were designed to explore particular
aspects of representation and processing, Rogers and McClelland
were able to simulate a broad range of phenomena such as cate-
gorization in infancy, learning labels at different levels of inclu-
siveness, and inductive generalization. They demonstrated that one
of the primary driving forces for all of these phenomena was
coherent covariation of features, which is the grouping of training
items based on the common clusters of features among these items.

Similarly, Franz and Triesch’s (2010) network was a unified
simulation of 12 studies from different laboratories that explored
two domains of perception: object unity and continuous trajectory.
The same pretraining phase representative of prior experience was
needed to simulate the tasks on unity perception and those on
trajectory perception; this consisted of static and moving objects
that occasionally became occluded. Networks that did not receive
an adequate amount of pretraining failed both types of tasks. The

fact that the same pretraining was necessary to model 12 distinct
experiments from two domains suggests a potential common un-
derlying basis for the two areas of research: Infants’ exposure to
moving and occluded objects in the world is a driving force behind
their perception. Additional examples of unified simulations are
the works of Munakata (1998) and Stedron et al. (2005) on
perseveration; Li et al. (2004) and Li, Zhao, and MacWhinney
(2007) on language acquisition; and Van Overwalle (2010) on
teleological reasoning.

In addition to shedding light on common mechanisms across
different behavioral tasks, the creation of a unified model can help
to address a criticism raised against connectionist networks regard-
ing the arbitrary nature of their starting states, which do not
intuitively match the characteristics of children (Oakes et al.,
2009). That is, the structure of the network prior to the simulation
(e.g., the starting weights, unit connectivity patterns) does not
clearly parallel the state of the child at the start of the experimental
observations (e.g., memory capacity, prior developmental history).
Furthermore, starting states vary across simulations, which high-
lights their apparent arbitrary nature. This problem can be reme-
died in part by the use of a single framework to model numerous
behavioral results. If the same starting state is adopted to model a
range of data (e.g., the same unit connectivity), this suggests that
the starting state is not arbitrary and may, in fact, provide an
accurate depiction of the child at the start of an experiment.

Beyond the more narrow unification at the level of a single
architecture modeling several experiments, there is a wider level of
unification that has been created by the use of connectionist
approaches across domains (e.g., categorization, theory of mind,
language). At this level, connectionist models have extended our
theoretical understanding of learning and development beyond
particular tasks and domains by highlighting the emergence of
complex behaviors from simple components (McClelland & Val-
labha, 2009). It has been argued that infants’ environments contain
an overwhelming amount of information, which requires biases or
constraints to guide learning and prevent the learning of arbitrary
associations (Keil, 1981; Murphy & Medin, 1985). Across do-
mains, connectionist models have been used to show that such
biases may not be necessary. Connectionist networks have high-
lighted the importance of experience in driving development (El-
man, 2005) and have shown that a system based purely on asso-
ciative learning principles without any prespecified biases can
learn the relevant information, exhibit complex behaviors, and
show nonlinear patterns of development (Munakata & McClelland,
2003). This has been referred to as emergence: Observed behaviors
emerge as a result of the interaction of various mechanisms; the
mechanisms are formulated in terms of equations, but their joint
operation gives rise to something more complex that is on a
different level of description (McClelland & Vallabha, 2009). That
is, the specific equations that determine the network processing
(e.g., how the inputs to a unit are integrated to determine its
activation) reflect the mechanistic dynamics. Based on these dy-
namics, behaviors such as labeling objects or reaching to certain
locations can emerge. Furthermore, these dynamics are not limited
to typical development: Small differences in starting states can
lead to large individual differences and developmental impair-
ments, without the need for specialized module damage (Mor-
ton & Munakata, 2005; Munakata & McClelland, 2003). One
case of emergent dynamics is the nonlinear pattern of develop-
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ment that can arise from linear mechanistic changes. For ex-
ample, Munakata (1998) has shown that linear changes in
connectivity strength can cause nonlinear changes in persevera-
tion such that infants’ development is characterized by a
U-shaped curve from no perseveration, to perseveration, to no
perseveration. Similarly, Li et al. (2007) have shown that an
exponential vocabulary spurt can occur based on linear changes
in the amount of exposure to words.

Another example of emergent dynamics is the interaction of
behaviors on different time scales (McClelland & Vallabha, 2009).
Weight changes that are a product of long-term learning influence
the current activations of the network, which, in turn, affect further
weight changes. For example, Rakison and Lupyan’s (2008) sim-
ulation showed that long-term experience with objects in the real
world can constrain the feature correlations that children can learn
in the lab. Similarly, Colunga and Smith (2005) have shown that
linguistic experience, as evidenced by vocabulary size, can con-
strain the manner in which children generalize novel nouns such
that they learn to use different properties to generalize about
different types of objects. Both simulations highlight the emer-
gence of complex constraints on behavior from domain-general
associative learning as long-term accumulated weights affect the
moment-to-moment behaviors. Taken together, the examples dis-
cussed above demonstrate the sufficiency of the same basic prin-
ciples of connectionism for acquiring a range of information. This
puts in question the need for biases, innate constraints, and spe-
cialized mechanisms to explain developmental changes.

Summary

Connectionist models can be a powerful tool in the formulation
of theories of infant development through three contributions.
First, predictions made by connectionist models can be an efficient
way of identifying the specific ages that should receive focus in
behavioral research and can be instrumental in disambiguating
between different theoretical accounts. Second, connectionist
models instantiate verbal theories of the mechanisms that underlie
developmental changes and provide an explicit test of whether the
mechanism can, in fact, produce the expected results. Finally,
models can create a unified framework that highlights similarities
in learning and development within and across domains. Taken
together, these three contributions of connectionist networks are
critical for the building of developmental theories. We now turn to
a discussion of the two ways in which development has been
modeled: based on changes in neural processing and based on
changes in experience. We relate this discussion to the contribu-
tions discussed above to provide concrete evidence of the added
value of connectionism.

Modeling Developmental Changes Through Changes
in Neural Processing

One common way in which infant development has been mod-
eled is through changes in neural processing. This approach as-
sumes that the developmental changes that are observed in behav-
ioral experiments are underpinned by development in the brain
structure of the infant. As this development unfolds, it leads to a
change in the way in which information is processed by the brain,
which in turn leads to a change in behavior.

Commonly Modeled Phenomena

There are four basic neural developments that have been simu-
lated in connectionist networks to account for changes in behavior.
The first is the developmental improvement in visual perception.
The second is the increased integration of information: As children
develop, information that is processed in different areas of the
brain becomes more integrated. The third is the developmental
improvement in maintenance of information in short-term mem-
ory. The last neural development that has been modeled is neural
plasticity, or the changes in brain structure through the addition of
new neurons, removal of old neurons, or changes in the intercon-
nectivity of the brain.

Perceptual development. One way in which neural process-
ing changes throughout infancy is via improvements in visual
perception (for a review, see Kellman & Arterberry, 2006), which
impact neural processing because they impact the amount and the
quality of information that can be processed. In terms of behavior,
visual acuity has typically been measured with preferential looking
procedures that assess both spatial frequency sensitivity and con-
trast sensitivity. Spatial frequency sensitivity is a measure of the
highest number of vertical gratings per degree of visual angle that
can be discriminated from a solid block of color. At birth it is
approximately 40 times poorer than in adulthood and requires
another 4 to 6 years to reach adult levels (Maurer & Lewis, 2001).
Contrast sensitivity is a measure of the ability to see items of
different luminance in an image. Similar to spatial frequency,
contrast sensitivity is also below adult levels at birth and can take
up to 15 years to reach adult levels (Maurer & Lewis, 2001). Such
visual constraints can severely limit the amount of information that
infants extract from the environment.

There are several examples of models that have implemented
developmental changes in visual perception to account for changes
in behavior. These networks can be broadly understood as imple-
menting a perceptual and not a cognitive change, because the
change occurs in the information that enters the system: Develop-
ment is simulated by allowing the model to obtain more or higher
quality information from the environment while the processing of
that information remains the same.

One example of the implementation of perceptual improvement
comes from Gureckis and Love’s (2004), simulation of infants’
performance in the classic Younger and Cohen (1986) study on
learning correlated attributes. In the study, 4-, 7-, and 10-month-
old infants were presented with line drawings of animals in which
two features correlated consistently, and the third feature varied
(e.g., the features of specific animals may be coded as 111, 112,
221, 222, where the first two features go together, and the third
varies). They were then tested on new animals with features that
retained or violated the correlation (e.g., 112 and 121, respec-
tively). By 10 months, infants looked longer when the correlation
was violated than when it was retained. Gureckis and Love (2004)
hypothesized that this change was a result of improvement in
visual acuity. As a test of this hypothesis, the model was trained on
inputs designed to represent the behavioral stimuli, and Gureckis
and Love manipulated the noise in the network to simulate devel-
opment of visual acuity. The input for younger networks contained
relatively high noise, which distorted the individual training ex-
emplars. This resulted in a failure to learn the training categories
because all of the inputs were indiscriminable. In contrast, the
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older networks contained less added noise and therefore less
distortion, which meant that the relevant features that distinguished
category members could be encoded.

A somewhat different perceptual improvement approach was
taken by Shultz and Cohen (2004) and Shultz (2010). Their sim-
ulations of the same task implemented an adjustment of the thresh-
old parameter in a cascade-correlation network, which sets how
closely the network’s outputs have to match the targets before
training stops. The match had to be closer for older networks than
for younger networks, so the older network underwent much more
training than younger networks to obtain a closer match between
the output and the target. This was considered a perceptual im-
provement because, according to the authors, the older networks
extracted more information than the younger networks did from
the stimuli. Subsequently, older and younger networks engaged in
the same cognitive process of comparing internal representations
to the external input, which suggests that no developmental change
was implicated in cognition.

Finally, Dominguez and Jacobs (2003) used yet another ap-
proach that explicitly built different levels of visual acuity into
their network to examine how changes in visual acuity can help in
the detection of binocular disparity. The model was presented with
an object in the left and right visual fields and was trained to
identify the amount of disparity between the two images. Domin-
guez and Jacobs used a feed-forward network that included three
groups of units that filtered visual input according to low, medium,
or high spatial frequency. On the basis of these filters, the model
activated a single output unit whose activation magnitude reflected
the amount of disparity that the model detected between the two
visual fields. Throughout training, the model adjusted its weights
based on feedback. Development was modeled by activating only
some of the filters and manually turning off others. Dominguez
and Jacobs found that binocular disparity was acquired only when
the filters were activated in a coherent progression (low, medium,
then high; or high, medium, then low). Those networks for which
the filters were all activated at once or were activated at random
did not perform as well. Once again, this model implements a
perceptual development, because there is a change in the amount
of visual detail that is processed. These results suggest that the
development of visual acuity in humans from low spatial fre-
quency to high spatial frequency sensitivity may be functional for
the acquisition of binocular disparity.

These three approaches to modeling development in visual
perception all assume two basic tenets: first, perception improves
throughout infancy, and second, these improvements account for
changes in behavior. Improvements in perception are implemented
in similar ways through a change in the quality or amount of
encoded information. The difference in these approaches comes
from the level at which the mechanism is specified. Gureckis and
Love (2004); Shultz and Cohen (2004); and Shultz (2010) left it
relatively unspecified: The assumption was that visual input im-
proves with age, with no specification of how this may happen. In
contrast, Dominguez and Jacobs (2003) provided more detail for
this mechanism, suggesting different levels of information filter-
ing. It may have been necessary for Dominguez and Jacobs to be
more specific in their mechanisms than the others have been
because they were interested in the emerging properties of the
visual system.

What have these three models contributed to our understanding
of the link between perceptual development and changes in be-
havior? First, the models of the Younger and Cohen (1986) work
generate a testable prediction: If it is theorized that visual acuity
hampers stimulus discriminability, infants should succeed in the
task when stimuli with more distinct features are used. A behav-
ioral test of this prediction could provide supporting or discon-
firming evidence for the theory. Second, all three models show the
sufficiency of the proposed mechanism of change for producing
the target behavior. Although verbal theory can specify the hy-
pothesized mechanism, it is possible that a concrete instantiation of
this mechanism would not result in the expected behavior because
of a missing component. For example, Dominguez and Jacobs’
(2003) verbal theory of the relationship between visual acuity
improvement and the emergence of binocular disparity could
have missed a factor, such as infants’ increased mobility, that
may alter visual experience and affect binocular disparity.
However, the model’s instantiation of this verbal theory dem-
onstrated that the hypothesized components were, in fact, suf-
ficient to produce the behavior, suggesting that the mechanism
operates in the theorized manner.

Integration of information. Another common neural devel-
opment that has been implemented in models is the increase in
integrated processing of information in the brain. That is, different
pieces of information in the input initially may be processed by
separate areas of the brain but over developmental time come to be
integrated into a unified internal representation. Recent work in
neuroscience has shown that, over development, functional con-
nectivity in the brain changes from being segregated, such that
spatially close regions show strong correlations, to being inte-
grated, such that spatially distant regions show strong correlations
(Field et al., 2009). One example of the development in informa-
tion integration is the model constructed by Mareschal et al.
(1999), which used the development of dorsal and ventral stream
integration as the underlying basis for changes in infants’ interac-
tion with objects.

The dorsal and ventral streams are the two processing pathways
of the visual system (Goodale & Milner, 1992; Ungerleider &
Mishkin, 1982; Van Essen, Anderson, & Felleman, 1992). The
dorsal stream processes information related to visually guided
attention and action and ultimately feeds into the posterior parietal
region, whereas the ventral stream processes object features nec-
essary for object identification and feeds into the inferotemporal
cortex. In terms of development, local responses to individual
scene components emerge earlier in the ventral stream than the
dorsal stream. For example Braddick, Birtles, Wattam-Bell, and
Atkinson (2005) have shown that visual evoked potential re-
sponses to orientation reversal, processed by the ventral stream,
are present in infants starting at 4 weeks of age. In contrast,
responses to direction of motion reversal, processed by the dorsal
stream, were observed in less than 25% of the infants prior to 7
weeks of age, and reliable responses were not found in most
infants until 11–13 weeks of age. In contrast, global responses
based on the integration of these components emerge earlier in the
dorsal stream than the ventral stream. For example, Braddick and
Atkinson (2007) found that infants can respond to motion coher-
ence in a visual display by 8 weeks, but it takes several extra weeks
for responses to global form to develop.
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Mareschal et al.’s (1999) model implemented the dorsal and
ventral pathways and their integration. The model received visual
input on a “retina,” which then connected to two separate banks of
units: the object recognition module and the trajectory prediction
module. The former represented the ventral stream, and its units
came to respond selectively to particular objects regardless of their
location on the retina. The latter represented the dorsal stream, and
its units learned to predict the next object location. Mareschal et al.
did not make theoretical commitments regarding their choice to
label these systems as “modules”; this label may have been used to
specify that sets of units processed a different type of information,
and they did not communicate directly with each other. According
to Mareschal et al., infants’ looking and reaching responses both
require the dorsal stream because object location must be tracked.
However, reaching for an object also involves the ventral system,
because the voluntary retrieval of an object requires an evaluation
of its identity and desirability. The results showed that dorsal-
stream-based responses emerged earlier than responses requiring
both streams, suggesting that the lag between looking and reaching
measures observed in behavioral studies may be due to prolonged
development of the integration between the two systems. Both
systems were immature and produced imprecise outputs. When the
behavior relied on only the dorsal system, as was the case with
looking, an accurate response could be produced early in training
because only a single imprecise system was implicated. However,
when the behavior relied on the integration of dorsal and ventral
streams, more training was necessary to produce an accurate
response because it required the coordination of two imprecise
sources of information.

This instantiation of the two visual processing streams is con-
sistent with the classic understanding of their information-
processing characteristics: The ventral stream codes features of
objects in a position-invariant manner; the dorsal stream codes
object location and supports actions toward objects (Goodale &
Milner, 1992; Ungerleider & Mishkin, 1982; Van Essen et al.,
1992; for more recent evidence showing that ventral stream neu-
rons are sensitive to position, see Aggelopoulos & Rolls, 2005;
DiCarlo & Maunsell, 2003; Op De Beeck & Vogels, 2000). Fur-
thermore, it is consistent with the protracted time course of the
development of dorsal and ventral stream integration (Braddick &
Atkinson, 2011). Mareschal et al.’s (1999) model provides an
alternative explanation for infants’ behavior in object permanence
tasks, because it suggests that information integration, and not
short-term memory as suggested previously (Munakata et al.,
1997), contributes to the emergence of successful performance.
Thus, the model demonstrates that the integration-based theoretical
account can explain the data, thereby prompting further behavioral
experimentation that can disambiguate between the two theories.

Another example of the development of integrated processing
comes from Mareschal and Johnson’s (2002) model of unity
perception experiments (e.g., Johnson & Aslin, 1996; Kellman &
Spelke, 1983), in which infants are habituated to a partially oc-
cluded rod and then tested on a complete rod or a broken rod. The
network received input about the movement of the rod behind the
occluder that was then sent to a layer of separate banks of units,
referred to as encapsulated feature detection modules by Mare-
schal and Johnson. Each module detected the presence or absence
of one of seven features, such as parallel object parts, comotion of
object parts, and background texture. The modules detected the

presence of these features but did not adjust connections through
learning. They were encapsulated in the sense that there were no
interconnections between the modules within that layer of the
network; instead, each module fed into the next layer of hidden
units. According to Mareschal and Johnson, these modules were
“analogues” of the visual system but they were not designed to
represent specific anatomical features. From the hidden units,
information was sent to the output units that coded whether there
were one or two rods as a binary output. This was not meant to
represent explicit counting of the rods but rather a perception of
the display as being unified or not unified. Over training, the
model learned to assess the unity of different displays that were
similar to the behavioral displays of one or two rods.

Mareschal and Johnson (2002) argued that the ability to inte-
grate the information from these different modules explains be-
havioral changes. Initially, the model perceived the individual
components of the visual information, but it could not combine
them coherently to perceive the unity of the display. However,
over time it developed weights that were effective in integrating
information and creating a representation of an occluded single
rod. Similarly, infants can detect all of the features that are present
in the habituation display (e.g., that the two parts of the rod lie on
the same line; two parts of the rod are moving together), but these
features are not used together in perception. Over time, infants
learn to integrate the features to generate a coherent internal
representation (e.g., perception of a single rod based on collinear-
ity and comovement).

Taken together, Mareschal and Johnson’s (2002) and Mareschal
et al.’s (1999) work illustrates that developmental changes in
behavior can be accounted for by changes in the integration of
information: Over time, infants proceed from basing responses on
individual pieces of information to basing them on a joint repre-
sentation of all available information. These models illustrate the
connectionist contribution to a unified understanding of develop-
ment. Connectionist networks naturally integrate the available
information by gradually developing a weight structure that takes
into account the similarity structure of the input. The success of
these networks in modeling different phenomena suggests that this
type of gradual learning can explain emergent behaviors across
domains. Furthermore, it is consistent with findings on increased
functional integration among brain regions over development
(Field et al., 2009).

Maintenance of information. Another common way to sim-
ulate developmental changes in processing has been through the
improved ability to maintain information over a delay, or increases
in short-term memory, typically attributed to the prefrontal cortex
in behavioral research. In now classic research, Goldman-Rakic
(1987) showed that neurons in the monkey’s dorsolateral prefron-
tal cortex maintained their activity over a delay period during
which the monkey had to remember a target; this activity was
interpreted as an internal representation of the target. Similarly,
Braver et al. (1997) found that activity in the human prefrontal
cortex correlated with the difficulty of a working memory task.
Káldy and Sigala (2004) suggested that the brain regions that
support working memory in infancy, particularly object-location
memory, are more widespread and include the entorhinal, perirhi-
nal, parahippocampal, and posterior parietal areas in addition to
the prefrontal cortex. Further, the frontal cortex develops more
slowly than other areas of the brain such as the visual and the
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auditory cortices (Huttenlocher, 1990; Huttenlocher & Dabholkar,
1997). For example, adult levels of neuronal density in the visual
cortex are reached at about 5 months of age; in the prefrontal
cortex, these levels are not reached until about 7 years of age
(Huttenlocher, 1990). Thus, areas that support short-term memory
develop throughout early childhood.

Short-term memory is often represented by the sustained activ-
ity of individual units in connectionist networks. Development is
modeled by increasing the network’s ability to sustain activity over
time. For example, in a model of the A-not-B error, Munakata
(1998) and Stedron et al. (2005) manipulated the persistence of
hidden unit activity by changing the strength of the recurrent
weights on these units. These recurrent weights were designed to
reactivate the hidden units whose activity decayed over time. As a
simulation of development of working memory, stronger recurrent
weights were instantiated in networks that simulated older children
than in those that simulated younger children. These stronger
recurrent weights enabled the hidden units to overcome the decay
in activation and maintain representations of hiding locations over
a delay. The older models were able to sustain the memory trace
of the new hiding location B and did not revert to responding at the
old hiding location A. In contrast, the younger models lost the
trace of the new location and continued to respond at the old
location. Working memory improvement has been observed in
empirical work, which showed that infants’ ability to maintain
information over a 300-ms delay improved between 6.5 and 7.5
months (Oakes, Ross-Sheehy, & Luck, 2006; for a dynamic field
theory model of these data, see Perone, Simmering, & Spencer,
2011). Strengthening recurrent connections to simulate improve-
ment in working memory is consistent with the available neural
evidence as well as with behavioral evidence. Synaptogenesis in
the prefrontal cortex continues well past the first year of life
(Huttenlocher & Dabholkar, 1997), so changes in working mem-
ory over time could result from more developed prefrontal syn-
apses of older children, akin to the stronger weights in the above
models.

The development of working memory was also modeled—albeit
in a different fashion—by Elman (1993) in an SRN of language
learning and sentence processing. The network was trained on
artificial sentences that were representative of the English lan-
guage. As in a standard SRN, the hidden unit activity that repre-
sented the current word being processed was also influenced by the
recurrent hidden unit activity that represented all of the previous
words in the sentence. However, the simulation varied from a
standard SRN in that this recurrent input was eliminated at random
time intervals. The amount of time between these eliminations
increased with age, which enabled the network to have a larger
memory span. This developmental increase in memory span is
consistent with empirical work showing that working memory
capacity increases throughout development (e.g., Káldy & Leslie,
2003, 2005).

Munakata’s (1998) work and Elman’s (1993) work focus on two
aspects of developmental improvement in working memory:
strength and span, respectively. The former models stronger con-
nections that enable the maintenance of information over longer
periods of time. The latter models larger memory capacity, such
that a greater amount of previous input is maintained in memory
while a new piece of input is processed. Analyzing the two models
together reveals a common underlying framework that explains the

two types of developments in working memory. The same basic
principles of connectionism can explain infants’ increased ability
to maintain a representation of a hiding location and infants’
increased memory span of recently presented verbal information.
This provides a more unified understanding of working memory
development in the first 2 years of life.

Neural plasticity. The final way in which developmental
changes in processing have been implemented in connectionist
networks is through the plasticity of the brain, or the change in
brain structure throughout an individual’s lifetime. The brain re-
mains flexible well after birth through three primary processes:
neurogenesis (birth of new neurons), synaptogenesis (creation of
new synapses between neurons), and synaptic pruning (elimination
of synapses). Postnatally, neurogenesis is restricted to the subven-
tricular zone and the dentate gyrus of the hippocampus (Stiles &
Jernigan, 2010). Synaptogenesis and pruning, however, are more
widespread, although their time course varies by brain area (Casey,
Tottenham, Liston, & Durston, 2005; Huttenlocher & Dabholkar,
1997). Synaptogenesis peaks earlier in sensorimotor areas than in
the prefrontal cortex, and in accord with this, synaptic pruning also
begins earlier in those areas.

Several modeling techniques have been used to account for
behavioral changes due to neural plasticity. One common approach
has made use of cascade-correlation algorithms (Fahlman & Leb-
iere, 1990); these are well suited for modeling neural plasticity
because of their dynamic network structure, in which new hidden
units are installed throughout training. This approach typically is
interpreted as modeling synaptogenesis (Shultz, 2003). However,
it should be noted that although the hidden units are added as a
natural part of network training, the algorithm that specifies when
a unit should be added may not reflect neural processing dynamics
that underlie synaptogenesis. Thus, this instantiation should be
taken to represent broad principles of neural plasticity, not the
specific mechanism by which synaptogenesis occurs. These mod-
els have been applied to studies on category learning (Shultz,
2010; Shultz & Cohen, 2004), false belief detection (Berthiaume,
Shultz, & Onishi, 2013), and rule learning (Shultz & Bale, 2001).

In a model of vocabulary acquisition, Mayor and Plunkett
(2010) implemented synaptic pruning in a self-organizing maps,
which learned associations between visual and auditory input.
They modeled synapse proliferation between two self-organizing
maps by creating a high number of random connections. At the end
of training, connections with small weights were eliminated. This
is akin to the processes of synaptogenesis and pruning: The former
forms some maximum number of synapses in early childhood, and
the latter eliminates unnecessary synapses to eventually settle at
adult levels (Huttenlocher & Dabholkar, 1997). Another example
of the use of self-organizing maps to model neural plasticity can be
found in models of language acquisition by Li et al. (2004) and
Farkas and Li (2002).

A final way in which neural plasticity has been modeled is
through the manual addition of hidden units in a static network. In
contrast to cascade-correlation frameworks, which recruit addi-
tional hidden units as training proceeds, this approach involves the
use of different model structures at different ages. For example,
Rakison and Lupyan (2008) constructed a network that had fewer
hidden units to simulate younger infants than to simulate older
infants.
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A key aspect of implementing neural plasticity in a network is
to compare the time scale of the target behavioral phenomenon to
the time scale of the hypothesized neural process. According to
Shultz and Bale (2001), the cascade-correlation algorithm is rep-
resentative of synaptogenesis and not neurogenesis in simulations
of habituation studies because only the former can take place
within the short span of a typical experiment. Synapse formation
between individual neurons can occur in minutes, but large-scale
changes in connectivity between distant brain areas take months or
years to accumulate (Stiles & Jernigan, 2010). Mayor and Plun-
kett’s (2010) model on vocabulary acquisition (see also Farkas &
Li, 2002; Li et al., 2004) and Rakison and Lupyan’s (2008) work
on infants’ learning of motion properties concern more protracted
developmental changes on the order of months. Neurogenesis,
large-scale synaptogenesis, and pruning would all be appropriate
candidates for modeling the findings of those studies. Thus,
slightly different implementations of neural plasticity may be
appropriate depending on the amount of time over which the
underlying neural changes are thought to occur. However, despite
the variations in implementation, these networks provide a broad
level of unification across specific experiments. They demonstrate
that a change in neural connectivity is sufficient to explain behav-
ioral results, or, more generally, that mechanistic dynamics of the
system can be a foundation for more complex emergent dynamics
of behavior.

Issues in Modeling Development of Neural Processing

Modeling behavioral changes as being based on neural devel-
opment is not without its challenges, and two issues are particu-
larly prominent: balancing neural plausibility and simplicity, and
providing the source for the changes in processing. The first issue
emphasizes simulations that reflect the fundamentals of neural
processing and include only the necessary and sufficient neural
constraints. The second issue emphasizes the instantiation of a
mechanism of change that is appropriate given the extent of the
neural research on the phenomenon in question.

Neural plausibility versus simplicity. Connectionist net-
works are inspired by principles of neural processing. However,
how accurately is this processing represented in a given model or
the connectionist approach as a whole? In our view, the instanti-
ation of neural processing in these networks balances neural plau-
sibility and simplicity. This balance is evident in two areas: which
neural components are included in the model and how they are
instantiated.

Building as many neural constraints as possible into a model can
be intuitively appealing, because the model appears to be a better
approximation of the infant. However, neural plausibility must be
balanced with simplicity in the course of selecting which compo-
nents to include. When neural constraints are hypothesized to
impact behavior, these constraints should be instantiated in the
model to verify this hypothesis (e.g., Munakata’s 1998 instantia-
tion of strengthening prefrontal connections as the causal factor
behind reduction in perseveration). However, neural constraints
that are unrelated to the target phenomenon should not be built into
the system simply to make the model more biologically plausible
(e.g., building a prefrontal system in a model of auditory process-
ing). This is because incorporating such assumptions will only
make for a cluttered and less comprehensible model. If multiple

systems are built into the model, it becomes less clear what each
system contributes to the outcome because there are numerous,
constantly changing connections between units. When the unnec-
essary components are removed, the processing in the model
becomes more transparent because the number of interconnections
is reduced. Additionally, when an overly complex system fails to
simulate a particular behavior, it can be difficult to determine if a
single component caused the failure—and if so, which component
it was—or if the interaction of the components was responsible.
Finally, there are practical constraints on large-scale models such
that often there may not be enough computational power to include
all possible neural components.

One solution to the challenge of including just the necessary
neural components is to rely on research in neuroscience that
specifies which components are directly involved in the target
behavior. Furthermore, modelers can assess the necessity of a
given neural assumption in the model by removing the assumption
and measuring performance. If the model continues to simulate
behavioral data, this assumption may be superfluous. The appli-
cation of these criteria is particularly useful for theory revision:
The model can test which components of the theory are necessary
and sufficient for the behavior.

It should be noted that, according to these criteria, there is no
fixed cutoff for what defines a simple or a complex model. That is,
there is no specific number of units, connections, or training
patters that determines if a model is simple or complex. Rather, the
simplicity of a model is defined relative to the behavior being
simulated. If the behavior is very complex (e.g., performing a
multisensory task) or if the network provides a unified simulation
of several experiments, it may be necessary to build a larger
network with more units or connections than what would be
necessary for a simpler behavior or a simulation of a single
experiment. In absolute terms, the former network would be more
complex than the latter. However, if both networks balance sim-
plicity and neural plausibility as discussed above, such that only
the neural components implicated in the behavioral phenomenon
are included in the simulation, then both can be considered to be
appropriately simple relative to the behavior in question.

Once the relevant neural components have been selected for
modeling, the accuracy of their instantiation in the model must be
assessed. To answer that question, we draw once again on the
principle of balancing neural plausibility and simplicity. Connec-
tionist models have largely focused on cognitive phenomena, and
this focus requires some amount of simplification because the
phenomena are at a much higher level than the underlying cellular
processes (Thomas & McClelland, 2008). This simplification is
necessary to constrain the size of the model, so that the result is a
model that is understandable and computationally feasible. Thus,
although an exact replication of the brain may be desirable, the
usefulness of such a model would be minimal because it would be
just as difficult as the brain to understand (O’Reilly & Munakata,
2000). Crucially, simplification should be used in a way that
maintains the key properties of the target phenomenon.

Connectionist networks have adopted a variety of simplifica-
tions of neural processing. For example, training with backpropa-
gation of error is not biologically plausible because signals cannot
be sent backward through neurons. However, this simplification
enables computational efficiency in training and has been shown to
be equivalent to a biologically plausible way of training a network
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(Xie & Seung, 2003). Thus, although not plausible in itself, it
captures the key properties of learning in a biologically plausible
system. Another example of simplification comes from unit acti-
vations. Although neural processing can be modeled at the fine-
grained level of individual neural spikes, such that the activity of
a single network unit represents a single neuron, a population rate
code typically is adopted, such that a unit represents the average
output of a population of neurons (O’Reilly & Munakata, 2000). In
employing this simplification, the model loses the details of inter-
action between individual neurons. However, the resulting unit
activity is representative of the activity over a whole brain region,
a level of approximation that is sufficient for modeling a cognitive
task. A final example of simplification can be seen in the simula-
tion of neural plasticity as described above. Neurogenesis, synap-
togenesis, and pruning have been modeled through the addition of
hidden units or the proliferation or elimination of unit connections.
These instantiations clearly omit many of the details of the pro-
cesses. For example, they disregard the migration of neurons from
the place of formation to their final destination, myelination of
axons that increases their conduction velocity, or the processes by
which axons are guided to their targets (Stiles & Jernigan, 2010).
Furthermore, it may not always be clear which specific process is
represented: For example, the addition of a hidden unit can rep-
resent the birth of a new neuron or a newly formed connection to
an existing neuron. Despite the simplifications, this representation
does capture some basic features of neural plasticity, such as the
developmental growth of processing capacity and changes in con-
nectivity. Taken together, these three examples demonstrate that
connectionist models are simplified to capture the relevant features
of neural processing in a manner that allows for a network that is
computationally feasible with a transparent and accessible mech-
anism of operation.

Source of the neural development. Another challenge that
modelers must face is how to implement the development in
processing that may emerge naturally within the system or may be
applied externally by the modeler. Some developmental simula-
tions employ the former approach. For example, cascade-
correlation networks automatically add hidden units throughout
model training (Fahlman & Lebiere, 1990). However, in a large
number of developmental simulations the modeler interferes with
network training to administer the developmental changes by hand
rather than having these changes occur without any further manual
input after the initialization of the simulation. One example of the
manual approach can be found in Shultz and Cohen’s (2004)
simulation of a correlated attribute learning task, in which the
score threshold parameter value, the criterion for how closely
network outputs had to approach the targets before training
stopped, was manually altered by the modelers to simulate devel-
opment.

On the surface, the manual approach might appear to be prob-
lematic for models of developmental phenomena, and it has been
criticized by several researchers (e.g., Dehaene, 1998; Smith &
Scheier, 1998; Younger et al., 2004). It may seem that a model
focused on development should encompass the full chain of events
that bring about a behavioral change. For example, if increases in
memory capacity are thought to underwrite the developmental
change, the model should be able to grow its own memory without
the modeler interfering and adding hidden units. One response that
has been provided to this criticism is that the mechanism of

processing changes often has not been adequately specified by
neuroscientists and therefore should not be included in a model
(Westermann & Mareschal, 2004). If there is no consensus about
how the processing develops, making changes externally instead of
building in an incorrect mechanism of change is appropriate.
Moreover, how the neural development occurs may be beyond the
scope of interest; instead, the interest may be primarily in how that
neural change brings about the behavioral change. Modeling this
latter question is challenging in itself and is an important first step
in understanding the behavioral change. Simultaneously adding the
mechanism by which the neural change itself occurs may make it
difficult to comprehend how the various components of the net-
work bring about the behavior. This may render the model less
useful, especially for understanding the causal link between neural
and behavioral changes.

Our goal is not to argue that neural processing changes should
always be made by hand. Rather, initial efforts to instantiate a
behavioral phenomenon in a connectionist network should do so,
because the first step is to understand whether the hypothesized
neural change can bring about the behavioral change and how that
process can occur. These questions can be answered most ade-
quately in a model that does not include extraneous mechanisms.
However, once these questions have been addressed in a simplified
network, one can proceed to the next step in the chain and simulate
the process by which the neural changes occur. In our view, the
models with hand-administered neural changes described in this
review have made important contributions to our understanding of
the behavioral changes in infancy. They also provide solid basis
for further exploration into the way in which neural changes can
emerge naturally within a simulation.

Summary

There are four common types of neural developments that have
been implemented in networks to account for changes in behavior:
those in perception, integration of information, working memory,
and neural plasticity. Taken together, these four approaches face
two primary challenges: balancing neural plausibility and network
simplicity and identifying the source of the changes in processing.
All four neural developments are occurring in infancy. However, it
is rare for modelers to implement all of them in a single network,
because usually only the neural change that is hypothesized to be
responsible for the behavioral change is included in the model.
Once the candidate neural changes are selected for modeling, they
are further simplified, which typically allows the modeler to de-
velop a network that can be easily analyzed and understood and
that is not computationally overbearing. Furthermore, many mod-
elers and developmental researchers are interested in the interplay
between neural and behavioral development, not the process by
which the neural development itself occurs. As a result, they
simplify further: They omit the mechanism that underwrites the
neural change and manually administer it instead, particularly if
the mechanism behind the neural change has not been adequately
explored in behavioral research. In our view, this provides a
critical foundation for understanding the link between neural de-
velopment and behavior and can spur further modeling efforts that
specifically focus on the source of the neural development itself.
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Modeling Developmental Changes Through Changes
in Experience

Another common approach to modeling developmental change
focuses on changes in experience. The theory behind this approach
is that developmental changes in infants’ behavior are a product of
infants’ learning about their environment. There is a long tradition
of research, starting with Piaget (1952), that studies the role of
experience in developmental change. This research spans a broad
range of domains such as motor development (e.g., Adolph, 1997),
visual expertise (e.g., Scott & Monesson, 2010), and language
processing (e.g., Werker & Tees, 1984). Thus, modeling work that
employs this theoretical stance is well grounded in empirical
research.

Commonly Modeled Phenomena

There are two common phenomena related to changes in expe-
rience that have been modeled by changing the training pattern set.
The first is based on the total amount of experience: Older children
may have more experience than younger children. The second is
based on the type of experience: Older children may have different
experiences than younger children.

Additional experience. By definition, older children have
more exposure than younger children do to particular events in the
environment. Accordingly, to model an older child the network
must receive more epochs of training with the stimulus set that
represents the child’s experience than needed to model a younger
child. For example, Rogers and McClelland (2004) modeled con-
ceptual development by assessing their network’s performance
throughout training: Early and late time points corresponded to
younger and older children, respectively. Similarly, Franz and
Triesch (2010) exposed older networks to more experience with
object movement than younger networks received prior to expos-
ing both to the habituation and test stimuli used in the object unity
perception experiments. Other examples of the use of additional
training to model developmental changes can be found in Mu-
nakata et al. (1997); Rakison and Lupyan (2008); and Schafer and
Mareschal (2001). Additional training is used to model develop-
ment when the underlying assumption is that the overt changes in
behavior are due to older children’s greater experience with a
particular domain. The success of this approach across domains
(e.g., unity perception, learning of correlations, perseveration)
demonstrates that the accumulation of experience can cause a
range of complex behavioral changes.

It is important to note that there may not always be a direct
correspondence between the number of additional training trials in
the model and the difference in age; that is, the amount of training
in a network may change nonlinearly as age changes in infants
linearly (Franz & Triesch, 2010). This may not be a fault of
networks, and it may align with infants’ exposure to the environ-
ment. As children age they spend more time awake (Halpern,
MacLean, & Baumeister, 1995), so it is possible that the amount of
experience acquired in the first month of life may be less than that
acquired in the fourth month of life. Thus, the total amount of
experience would change nonlinearly, because each subsequent
month of life adds more experience than did the previous month
due to more time spent awake.

Changing the type of experience. As an alternative approach
to modeling development, modelers may opt to change the training
set. The logic behind this strategy is that children may have
different experiences as they become older—for example, by
changing what they attend to in a scene—and therefore the expe-
rience provided to the older network should reflect this change.
One example of this approach is Elman’s (1993) model of lan-
guage learning. As the network was trained, the ratio of complex
to simple sentences in its training set increased. However, Elman
acknowledged that this may not have been a plausible instantiation
of language exposure, because it is unlikely that children’s expe-
rience would shift from only simple to only complex sentences.
Another example of a changing training set can be found in Mayor
and Plunkett’s (2010) model of the development of joint attention
and language. Infants are initially unable to engage in joint atten-
tion, so when an adult labels an object, infants cannot use the
adult’s gaze direction to detect the labeled object (for a review, see
Mundy & Van Hecke, 2008). However, once infants can engage in
joint attention, they can detect simultaneously the labels and their
referents. To model this change, Mayor and Plunkett (2010) ini-
tially trained the network separately on objects and labels and then
shifted to their simultaneous presentation.

Note that examples cited above addressed language develop-
ment (see also the language acquisition models of Farkas & Li,
2002, and Li et al., 2004, which employ a growing training set). To
our knowledge, no simulations of infant behavior in which a visual
training set changed with age have been conducted. It is plausible,
however, that such an input change may occur, because once
infants sit up, crawl, and then walk they have access to a greater
variety of environments (Campos et al., 2000). Therefore, an
outstanding issue is how developmental changes in infants’ visual
environments may contribute to the differences in their behavior.

Issues in Modeling Changes in Experience

As with neural-development-based approaches, simulations that
employ changes in experience encounter a number of challenges.
Among the most common challenges are those related to the
generation of training events, interference during different phases
of learning, and the role of feedback in learning. The first and the
third challenges require modelers to ensure that there is a tight
coupling between the child’s and the model’s experiences. The
second challenge requires an alternative theoretical basis for the
way in which infants store learned information.

Generating the appropriate experience. Generating the
training stimuli for the network can be challenging because they
must reflect the experiences that infants are thought to have, which
is particularly critical when those experiences are theorized to be
the causal factor behind development. Two factors must be con-
sidered when the training set is generated for a given network:
whether it is generated based on real measurements of the envi-
ronment or on approximations, and the amount of training that
should be provided. In a way, the problem of generating appro-
priate experiences for a network parallels the problem of which
neural components to instantiate in the network, as discussed
above. With respect to neural components, we advocated for the
inclusion of only those that are causally relevant to the develop-
mental change. Similarly, it is necessary to select only those
experiences that are causally relevant to the development. We
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return to this parallel later, in the section titled “Common Chal-
lenges for Brain-Based and Experience-Based Approaches.”

It is relatively straightforward to generate training examples
based on real measurements when specific experimental stimuli
are available, because the researcher has simply to recode these
stimuli according to some scheme that preserves the features of
interest. For example, Christiansen and Curtin (1999; Christiansen,
Conway, & Curtin, 2000) used an 11-feature phonological coding
scheme to recode the sounds presented by Marcus et al.’s (1999)
study on rule learning in infants. Each phoneme used by Marcus et
al. was represented across the 11 phonological feature input units
according to the presence or absence of each feature in that
phoneme. Additional units coded boundaries between syllable
strings and the stress of each phoneme. Similarly, Mareschal et al.
(2000, 2002) and French et al. (2004) used the Quinn et al. (1993)
cat and dog stimuli in their behavioral experiments and took
measurements of the stimuli to create training patterns for the
model. Feature measurements of the cat and dog photographs (e.g.,
leg length) were converted to activation values across units coding
those features. For example, shorter legs had a lower activation
value of the “leg length” unit than did longer legs.

Nonetheless, as cautioned by McClelland and Plaut (1999), one
must be careful when coding experimental stimuli because the
modeler’s choice of representation may not align with the way that
infants represent the stimuli. If a modeler represents the stimuli
incorrectly, the model may still reproduce the infants’ behavior but
for different reasons, because it would rely on different informa-
tion. As a result, although the model may match infants’ behavior
in the current task, it may fail to generalize to other tasks in which
distinct ways of representing the input would result in different
behavioral outcomes. For example, various researchers have used
alternative coding schemes to those of Christiansen and Curtin
(1999; Christiansen et al., 2000) to code the stimuli used in the
Marcus et al. (1999) experiment: Shultz and Bale (2001) used a
single sonority feature, whereas Gasser and Colunga (2003) used
five phonological features. Unfortunately, it is extremely difficult
to determine which, if any, of these coding schemes is the most
appropriate or accurate. For example, the specific features of the
auditory stimulus that are perceived and encoded by infants remain
to be seen. As a result, it may be the case that a given model and
infants rely on entire different sets of features to dishabituate to the
test stimuli. Although in this case the different ways of represent-
ing the experimental stimuli may give the same outward behavior,
there may be a task in which they would result in a mismatch
between the model’s performance and the infants’ performance.
For example, Shultz and Bale (2001) suggested that it may be
possible to assess whether infants solely encode sonority, or
vowel-likeness of a phoneme, in Marcus et al.’s experiment by
changing the experimental stimuli such that they consist of differ-
ent phonemes that have the same sonority value. If infants rely
only on sonority, they should be unable to discriminate phonemes
with the same sonority and should treat the consistent and incon-
sistent test items as equivalent. In contrast, if the behavioral results
still match the original findings, this would suggest that infants
likely rely on other features to discriminate the experimental
stimuli. This provides an example of the theoretical contribution of
modeling: Models point out areas in which our understanding is
insufficient to build the mechanism that underlies the behavior;
they make predictions for behavioral outcomes based on different

theories; predictions are tested experimentally; and theories re-
ceive either supporting or disconfirming evidence.

In contrast to taking measurements of real experimental stimuli
as a basis for the training set administered to the model, taking
measurements of the general environment to which infants are
exposed is much more challenging. Information is limited about
the types of daily events that infants experience and learn about.
The most extensive database of children’s early environments is
CHILDES (MacWhinney, 2000), which covers over 130 corpora
of transcripts of naturalistic linguistic interactions that involve
children. Each corpus varies with respect to the context, children’s
age, number of children studied, and language spoken. For exam-
ple, the Korman corpus consists of transcripts of British mothers
speaking to their infants, and the Hungarian corpus consists of
transcripts of five 1- to 3-year-old children who are engaged in free
play. Modelers have used CHILDES extensively to endow their
models with linguistic experience that is comparable to what
children may encounter in the real world (e.g., Christiansen, Allen,
& Seidenberg, 1998; Li et al., 2004, 2007).

CHILDES is not the only tool modelers have used to provide
linguistic experience to a network that is directly based on chil-
dren’s experience. Li et al. (2004, 2007) used the MacArthur–
Bates Communicative Development Inventory (CDI; Dale & Fen-
son, 1996) to ensure that the model was trained on the words that
children acquire early in life. One advantage of using databases
such as CHILDES and the CDI is that they allow the modeler to be
specific about the age that is simulated. For example, Li et al.
(2004, 2007) used the CDI to model the language capacity of
children at a particular age by selecting the words that the average
child knows at that age. In contrast, when the training set supplied
to the model is based on estimates of the real environment rather
than direct measurements, there is less specificity about the age
being modeled, which, in turn, makes developmental predictions
less precise.

Although measurements of children’s language experience are
available for modelers to use, children’s visual environment has
been less specified. There have been some recent efforts in this
area in which head-mounted cameras were used to track children’s
visual experience (e.g., Aslin, 2009; Cicchino, Aslin, & Rakison,
2011; Franchak, Kretch, Soska, Babcock, & Adolph, 2010). But
these efforts have been limited, and only a few modelers have
employed such data to specify the model’s visual input (e.g., Yu &
Smith, 2011; Yurovsky, Hidaka, Yu, & Smith, 2010). However,
generating network training sets based on data taken from video
would allow for more precision in specifying the role of experi-
ence in developmental change. Therefore, it is necessary for mod-
elers to make greater use of the current data available on infants’
visual experience. Similarly, it is necessary for behavioral re-
searchers to study such experiences in a variety of daily contexts,
cultures, and developmental periods, so that they may be cataloged
in a manner similar to that of CHILDES (MacWhinney, 2000) and
used in modeling work.

As a result of the difficulty in obtaining direct measurements of
infants’ experiences, a number of modelers have opted to approx-
imate these instead. For example, in a model of language learning,
Elman (1993) used an artificial language that had characteristics of
English to approximate the linguistic input of a young child.
However, Rohde and Plaut (1999) have criticized this approach
because the training corpus omitted the crucial semantic con-
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straints that exist in English. In fact, Elman’s (1993) results relied
on the absence of such constraints, and a different outcome oc-
curred when semantics were added to the input. Similarly, Mayor
and Plunkett (2010) used constraints that they believed to be
veridical of children’s visual and linguistic environments to gen-
erate an artificial set of labels and objects for their model of
language acquisition. For the labels, Mayor and Plunkett assumed
that most words heard by infants are produced by the same speaker
(e.g., the infant’s mother); therefore, most word tokens given to the
model were highly similar in pronunciation. For the objects, the
they assumed that object categories have a similarity structure and
that these categories sparsely fill the representational field. Ac-
cordingly, each category had a prototype that was distorted to
different degrees to create category members. However, item gen-
eration based on prototype distortion may not be valid because it
assumes a symmetric distribution of items around a center, which
may not be the case (Johns & Jones, 2010).

One drawback to an artificial training set is that it may contain
spurious correlations, or correlations between two things that hap-
pen to be correlated in an artificial training set that are not
correlated in real life (Mareschal, 2003). They occur without the
modeler’s intention simply due to the coding of the different
features of the training items. Connectionist networks are powerful
statistical learners that will pick up on all regularities present in the
input, including spurious correlations, which may negatively in-
fluence the networks’ performance. For example, in Mareschal and
Johnson’s (2002) model of unity perception, the artificial training
set had a weak correlation between the presence of background
texture and the presence of two objects due to the way in which the
background texture was coded. This spurious correlation nega-
tively impacted the network’s ability to learn an event that con-
tained background texture and a single object. Alternatively, the
network could rely on such spurious correlations outwardly to
match the behavior of infants, but the model and the infants would
behave similarly for different reasons. An artificial training set
may also miss a correlation that is present in the environment. In
such cases, the model may fail to simulate behavior because the
necessary correlation that is available to infants is not available in
the network’s training set.

Once the set of training items has been generated, the modeler
must select the amount of training for the model, in terms of both
the item distribution (i.e., whether all items are seen with equal
frequency) and the amount of training (how many times the entire
training set would be presented). If the training examples were
generated based on measurements of the environment, selecting
the distribution of items can be relatively easy because it can be
based on their real-world distribution. However, if the examples
were artificially created, the modeler must decide whether the
frequency with which individual items are presented would vary.
For example, Cohen et al. (2002; see also Chaput & Cohen, 2001)
had to infer the frequency of causal and noncausal events in the
infant’s environment for their models of causal perception. Cohen
and colleagues assumed that causal events were more common
than noncausal events in infants’ daily experiences, so they pro-
vided the models with a large corpus of examples of which 85%
were causal and 15% were noncausal. Other modelers have opted
for an equal distribution of all experiences. For example, Smith,
Gasser, and Sandhofer (1997) and Gasser and Smith (1998) ran-
domly generated training items in their simulation of the acquisi-

tion of object feature labels, which made it unlikely that some
items would appear more frequently than others.

In addition, the overall amount of experience must be specified.
Typical infant experiments last just a few minutes and usually
administer one to two dozen trials in total. Indeed, it is rare for
infants to be exposed to hundreds of training trials in the labora-
tory. In contrast, models of these experiments vary widely with
respect to how many training repetitions are administered. For
example, Westermann and Mareschal (2004) presented the training
set 1,000 times in their simulation of Younger and Cohen’s (1986)
habituation experiment. In their simulation of the same experi-
ment, Gureckis and Love (2004) administered the same number of
repetitions as the behavioral experiment with infants. However, in
our view, a direct correspondence between the number of trials that
networks and infants receive may not be necessary, because each
network training trial may not be representative of a single expo-
sure to the stimulus. Instead, it could be representative of the
additional processing that is supported by the hippocampal system
that re-creates previously presented patterns so that they may
encoded in the cortex (Foster & Wilson, 2006; McClelland et al.,
1995). Although there is no direct evidence that suggests that the
infant hippocampus can re-create patterns, there is evidence that
the hippocampus cell proliferation starts at the 24th gestational
week and is largely complete by the end of the first postnatal year
(Seress, Ábrahám, Tornóczky, & Kosztolányi, 2001). This pro-
vides some indirect evidence that the infant hippocampus, at least
by the end of the first year of life, may be sufficiently developed
to re-create information that has been presented and thereby sup-
port cortical encoding. Thus, the greater number of trials received
by networks may reflect the additional processing supported by the
hippocampal system.

Interference in learning. One issue in incorporating changes
in experience that modelers commonly face is catastrophic inter-
ference, which arises when a model is trained to produce outputs
to two distinct sets of stimuli in succession such that new experi-
ences “overwrite” previous ones (McCloskey & Cohen, 1989). All
of the weights initially are adjusted to accommodate the first set
only; then, all become readjusted to accommodate the second set
only, thereby greatly altering any knowledge that was stored about
the first set. Catastrophic interference can be problematic when
developmental models incorporate a “real-world” experience
phase prior to an experimental lab phase or when the experience
set is changed with development. For example, to simulate the way
in which prior experience with speech could influence an infant’s
performance in a language-related experiment in the lab, a model
would be trained on a set of prior experiences representative of the
speech that infants normally hear throughout the day. Following
this prior experience phase, the model would be trained and tested
on the experimental stimuli. In this example, catastrophic interfer-
ence could arise between the habituation training and the prior
experience training. The weights that were initially developed to
accommodate the prior experience stimuli would be altered by the
habituation stimuli, such that the model may no longer provide the
correct responses to the prior experience stimuli.

One way to avoid catastrophic interference in models is to use
a complementary learning systems approach (McClelland et al.,
1995; O’Reilly, Bhattacharyya, Howard, & Ketz, 2011). This
approach is based on the idea that learning and memory are
supported by two systems: the hippocampus and the neocortex.
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The hippocampus encodes new information rapidly and reinstates
it in the neocortex, which then slowly incorporates it into the
current body of knowledge. There is relatively high overlap in the
neocortical representations, which supports generalization; thus,
information learned about one item extends to other items that
have similar representations. In contrast, hippocampal coding is
sparse, such that each unit represents a particular combination of
features. This sparse coding reduces interference between the
current stimulus and previously learned information, which allows
the hippocampus rapidly to encode new information without sig-
nificantly altering prior knowledge. These complementary systems
could be used to implement different phases of learning in devel-
opmental models. A specific instantiation of this can be found in
Rakison and Lupyan’s (2008) SRN that simulated conceptual
development in infancy. The two systems were represented by
separate banks of hidden units: a “fast-learning” set of hidden units
representative of the hippocampus and a “slow-learning” set of
hidden units representative of the neocortex. All input units con-
nected to all units in the slow-learning and fast-learning systems,
and all units in those systems connected to all output units. The
fast-learning system weights had a higher learning rate and a
higher decay rate than did the slow-learning system weights.
Training of the model proceeded in two phases. During pretrain-
ing, representative of infants’ prior experiences, both the fast-
learning and the slow-learning weights were adjusted, but during
habituation, representative of the lab experience, the slow-learning
weights were fixed and only the fast-learning weights were ad-
justed. This ensured that the habituation stimuli did not create
catastrophic interference with the pretraining stimuli.

With respect to infants, the use of the separate weights was
intended to represent the fact that the brief habituation experiment
in the lab should not influence long-term memories of prior expe-
riences. However, because the slow-learning weights were main-
tained, albeit in a fixed state, prior experience influenced the
processing of the habituation stimuli. It should be noted that
freezing long-term weights during habituation is a simplification,
because infants do retain memories of habituation stimuli over a
delay; for example, Pascalis, de Haan, Nelson, and de Schonen
(1998) have shown that 6-month-olds recognize images of faces to
which they were habituated after a 24-hr delay. Despite this
simplification regarding the long-term encoding of habituation
experiences, the model does consistently represent the hypothe-
sized effect of prior experience on habituation learning. Thus,
complementary learning systems may be a useful tool for devel-
opmental networks that model the relationship between prior ex-
perience and lab experience or that account for developmental
changes by changing the set of training events.

Role of error-correcting feedback in learning. Another is-
sue that can arise with respect to connectionist networks relates to
the way in which learning occurs, with or without error-correcting
feedback. Under the first option, weight adjustment occurs through
the minimization of the discrepancy between the produced and the
desired output. This is referred to as supervised learning, because
a specific teaching signal that identifies the correct output is
provided to the network. Under the second option, referred to as
unsupervised learning, there is no teaching signal. The type of
learning that is chosen for a network must be in accordance with
the infant’s experience: Does the infant receive feedback during
learning?

A representative example of supervised learning comes from
work on categorization by Quinn and Johnson (1997). They trained
a three-layer backpropagation network on various animals and
furniture that were coded across the input units. The network’s task
was to produce the basic (e.g., cat) and global (e.g., mammal)
category of each item that was presented on the input. However,
supervised learning may not be appropriate in this case. It is
unclear what the source of the teaching signal would be in the
network, because the model simulated the performance of very
young infants who did not produce category labels explicitly and
therefore could not have been corrected by a parent. In addition,
parents rarely provide explicit corrective feedback, and children
may ignore such feedback when it is provided (Brown & Hanlon,
1970; MacWhinney, 2004; Marcus, 1993). Thus, supervised learn-
ing in the form of an explicit external error signal and desired
target may not always be a plausible way of modeling infants’
learning.

However, it is possible to provide an error signal to a network
that is internal to the infant. One approach has been to use encoder
networks and SRNs, which involve supervised learning but attri-
bute the error to an internal comparison between the external
stimulus and its internal representation. During training, these
networks learn to reproduce the input pattern on the output units.
As a result, it can be argued that learning is essentially unsuper-
vised because no agent actively provides an error signal to the
child (Mareschal et al., 2002). For example, in an encoder model
of infants’ categorization of cats and dogs, the network compared
its re-creation of the stimulus to targets that were identical to the
original inputs (French et al., 2004; Mareschal et al., 2000, 2002).
In some sense, this is similar to infants’ comparison of their
internal representation of the cat or dog with the animal that is
displayed on a given trial. Similarly, in SRN simulations of object
permanence, the network’s prediction of the next input was com-
pared to targets that were identical to that next input (Franz &
Triesch, 2010; Munakata et al., 1997). Again, this was comparable
to an infant who anticipates some visual input and then compares
it to reality. This approach to modeling task performance is con-
sistent with theories of infants’ information processing: Infants’
attention is driven by the formation of an internal representation of
the stimulus and the comparison of this representation with the
information present in the environment (e.g., Cohen, 1973;
Sokolov, 1963).

Alternatively, it is possible to modify supervised learning algo-
rithms such that feedback is provided in a more realistic manner.
In a typical backpropagation network, error signals are provided to
all output units. This results in a situation where there is feedback
about all possible responses, which may not always be plausible.
For example, Gasser and Smith (1998) argued that children do not
receive all potential feedback from parents when they learn to label
properties of objects; rather, the feedback is limited to the correct
response. When the child learns to label colors, the child may
consider multiple potential color names for a given object but may
verbally produce just one. If the child says that a lemon is red, the
parent may say, “No, it is not red, it is yellow,” but the parent
would not provide feedback about all other colors such as “It is
yellow, it is not red, it is not blue, it is not green, it is not purple.”
In contrast, a backpropagation network receives the latter form of
feedback, because it assumes that all of the colors that the child has
considered, not just the one that was verbally produced, are eval-
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uated according to their correctness. Gasser and Smith (1998; see
also Smith et al., 1997) sought to make feedback administration
more plausible when training a network to label object properties.
The network learned to label the feature that was queried (e.g.,
object color) by activating the correct output unit, and an error
signal was provided only to the output unit that indicated the
correct response and to any other output unit that was active
beyond a particular threshold. Thus, the network received two
types of teaching signals: When it was correct it was given that
feedback (akin to saying, “Yes, the lemon is yellow,” if the child
correctly identified the color), and when it was incorrect it was
instructed that the particular response was incorrect and provided
with feedback about the correct response. This type of feedback is
more synonymous with a parent correcting only the verbal re-
sponse of the child and not all of the options the child initially
considered.

There are a number of contexts in which it is better to forgo
supervised learning algorithms in favor of unsupervised learning
because the latter does not use any error signal and therefore does
not need to be modified for contexts when there is no explicit
source of error correction. The most common unsupervised algo-
rithm is Hebbian learning, which is often used to train self-
organizing maps (e.g., Cohen et al., 2002; Li et al., 2004, 2007).
Hebbian learning strengthens the weight between two units whose
activity is correlated and weakens the weight between two units
whose activity is uncorrelated. It is considered as similar to long-
term potentiation and long-term depression processes in the brain
(Munakata & Pfaffly, 2004). For example, Cohen et al. (2002)
used Hebbian learning to modify the connections in self-
organizing maps during training on causal and noncausal events.
The maps learned the similarity structure of the examples with
respect to their spatial, temporal, and causal characteristics. Un-
supervised learning was appropriate in this case because it is
unlikely that infants experience explicit feedback that specific
events are either causal or noncausal. Hebbian learning has also
been instantiated in other types of networks that do not form
topographic representations but rather learn to activate particular
output units given a certain input. For example, Colunga and Smith
(2005) used Hebbian learning in a network that was trained to
reproduce the names of objects when given input on their proper-
ties. However, it is unclear whether learning is completely unsu-
pervised in this case, because it is likely that some feedback would
have been provided in situations when the child produced the
wrong label for the object.

We should note that, in addition to supervised and unsupervised
learning, another option for learning exists in the form of rein-
forcement learning (Barto, 1995). This type of learning involves a
system that performs actions that are evaluated by a critic. How-
ever, the system receives no input about the optimal action or the
way in which its current actions should be changed to reach the
optimal action. To our knowledge, in developmental models, this
type of learning has been used only to study motor development
(Berthier, Rosenstein, & Barto, 2005).

Summary

Two techniques have been used to model the impact of experi-
ence on developmental changes in behavior. The first technique
focuses on quantity: Older infants’ greater experience within a

domain changes their behavior. In neural networks, this has been
simulated through additional training: Networks that are intended
to simulate older infants are given more epochs of training than
those that are designed to simulate younger infants. The second
technique focuses on quality: Older and younger infants have
qualitatively different experiences, which causes different behav-
iors. This has been implemented in neural networks by changing
the set of training examples over time. Both approaches allow
researchers to show how experience can give rise to observed
behaviors: The verbal theory that the two are related is substanti-
ated by a working mechanism that demonstrates the sufficiency of
experience. Furthermore, they highlight commonalities across
studies that may initially appear unrelated. For example, accumu-
lation of experience can lead to nonlinear patterns of development
in language acquisition (Li et al., 2004) and in learning correla-
tions between object features (Rakison & Lupyan, 2008).

Both techniques face a challenge of selecting the appropriate set
of training stimuli and specifying whether learning about these
stimuli will occur with or without feedback. Both of these aspects
must be in line with infants’ real-world experiences. However,
there is often a lack of empirical evidence for infants’ real-world
experiences, particularly visual experiences. Thus, modelers often
make general assumptions about infants’ learning or experiences
(e.g., infants likely get more experience with causal than noncausal
events; Cohen et al., 2002), but these assumptions remain to be
evaluated empirically. Building them into a network can provide a
critical test of whether the hypothesized experiences can explain
changes in behavior. An additional challenge is related to the
catastrophic interference of new experiences with previous expe-
riences during learning. Catastrophic interference can be avoided
through complementary learning systems that are designed for
long-term and short-term accumulation of information.

It should be noted that although there are fewer techniques that
are used to model changes in experience than there are to model
development in neural processing, this should not be taken to
reflect the superiority of one approach over another. The two
approaches are equally well supported empirically and provide
equally strong accounts of developmental change. The discrepancy
is simply a result of the complexity of neural changes—there are
numerous changes that occur in early childhood, many of which
have now been implemented in connectionist models. In contrast,
changes in experience occur only in the amount or the type of
experience.

Common Challenges for Brain-Based and
Experience-Based Approaches

Numerous parallels can be drawn between models that simulate
development based on neural processing changes and those that
model development based on experience. These parallels relate to
the challenges and solutions that arise for both approaches. There
are four challenges commonly found: the balance between central
and peripheral components in a network, parameter specification,
inadequate research on the topic being modeled, and model com-
parison. These challenges are important to address because they
may lead to misperceptions and mistrust of connectionist model-
ing.
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Central and Peripheral Components in a Simulation

A given behavior is determined by a multitude of components,
any of which could be instantiated in a model. For example, a
model of children’s performance in a sequential touching task
could include the child’s mood, experience with similar objects,
the motor neuron activity that governs reaching, or the retinal
ganglion cell activity in response to visual input, to name a few.
Which of these components, if any, should be included in a
developmental model that simulates change over time? We pro-
pose that to answer this question the candidate components should
be classified as either central or peripheral. Central components
are those that are theoretically relevant to the developmental
change; that is, these components are part of the theorized mech-
anism that causes the change. In contrast, peripheral components
are those that are not theoretically relevant to the developmental
change; although these components are present in the behavior,
they do not cause the change in behavior. It should be noted that
the decision to classify components as central or peripheral may
not always be straightforward. The components that are deemed
central and peripheral can vary depending on the question being
asked or the theory behind the developmental change. For exam-
ple, if the researcher is asking a question at the level of cellular
dynamics, different components may be included than if the ques-
tion is asked at the level of neural systems dynamics. Although the
decision as to which components are central and peripheral may be
subjective and be driven by the modeler’s interests, it should be
supported by a clearly articulated theory that identifies the com-
ponents that are thought to be involved in the mechanism of
change.

Once central and peripheral components have been identified
based on the theory of development, the modeler must decide
which components should be included in the network. One alter-
native is to include only the central components. This approach to
modeling has been referred to as the fundamentalist approach
(Kello & Plaut, 2003), because it includes only those components
that are fundamental to account for the behavioral phenomenon.
Models that include all of the proposed central components should
be consistent with the behavioral data, because it is those compo-
nents that are hypothesized to give rise to the data (Seidenberg &
Plaut, 2006). Although peripheral components may be added, they
would not add to the simulation of the observed behavior. In the
above example, one explanation for developmental changes in
sequential touching performance could be greater experience with
the objects that are presented. Thus, experience would be classified
as a central component and included in the simulation. In contrast,
if it is assumed that motor neuron activity does not change across
ages, motor neurons would be classified as a peripheral component
and might be omitted from the simulation.

An alternative to the fundamentalist approach is the realist
approach, which prescribes that all known components of the
behavior should be included, regardless of their potential contri-
bution (Kello & Plaut, 2003). According to this approach, it is
impossible to definitively identify which components are neces-
sary to explain the behavior, and thus all candidates should be
included. Although it may seem that this would yield the closest
approximation of an infant, it is usually not advantageous. The
inclusion of all components obscures the mechanism because it
becomes less clear which ones cause the change. Therefore, prior

to model construction the mechanism of change must be clearly
articulated, so that all of its necessary components are apparent.
This approach also allows for the most effective theory improve-
ment: If all of the central components are included and the model
does not replicate the behavioral data, the theory of development
must be revised and different central components should be iden-
tified.

Central and peripheral components have to be identified both in
neural-based and experience-based developmental models. The
importance of identifying and including only the central neural
components has been discussed in some detail above, in the section
titled “Neural plausibility versus simplicity.” A model that appro-
priately balances plausibility and simplicity includes the neural
components that are hypothesized to cause the developmental
change, and it is not cluttered with peripheral neural components.
For example, Mareschal et al. (1999) hypothesized that changes in
infants’ behavior in object permanence tasks are based on the
development of dorsal and ventral stream integration. Accord-
ingly, Mareschal et al. instantiated those streams in the network. In
contrast, Munakata et al. (1997) did not attribute the developmen-
tal change to the two streams, so the network did not include them.
It is unlikely that Munakata et al. would doubt the existence of that
neural division; rather, it was not central to their explanation of
development and therefore was not included in the model struc-
ture.

Similarly, central and peripheral components must be identified
in experience-based models, so that only the experiences that are
central to the mechanism of change are used in training. For
example, Franz and Triesch (2010) hypothesized that visual expe-
rience with linear object motion and occlusion contributes to the
development of object unity perception, so the network was trained
on these events. Although there are numerous other events that
infants see within the first few months of life (e.g., causal events,
nonlinear motion), these were not included in the training because
they were not hypothesized to be part of the mechanism of change.
This allowed for the cleanest demonstration of this mechanism:
Older networks received more experience with the set of events
and displayed different behavior than did younger networks; there-
fore, those experiences must have been sufficient to cause the
developmental change.

Taking the neural- and experience-based approaches together, it
becomes clear that one commonality between the two is the need
for a clear theory of developmental change prior to model con-
struction to guide the identification of the central and peripheral
components of a given behavior. Crucially, the identification of
some components as peripheral does not indicate that they are not
present in the behavior. Rather, they are not causally relevant to
the mechanism of change. Different groups of researchers may
develop different underlying theories for this mechanism, which
results in different model structures or sets of training events, as
evidenced by the example of Mareschal et al.’s (1999) and Mu-
nakata et al.’s (1997) models of object permanence studies.
Such alternative theoretical and network approaches to the same
behavioral phenomenon can significantly increase the under-
standing of that phenomenon through the development of novel
testable predictions. Furthermore, proposing a clear theory of
development and using it to explicitly identify the central and
peripheral components can address some of the criticisms lev-
eled against connectionism. For example, the criticism that
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connectionist terminology may be off-putting to nonexperts
(Klahr, 2004) may be in part due to the fact that this terminol-
ogy is not always grounded in developmental theory. This
makes it difficult for behavioral researchers to understand the
role of model components in generating behavior. If modelers
explicitly identify the central and peripheral components of
their network based on a theory of development, researchers
who are not experts in modeling may find simulations more
accessible.

Parameter Specification

Another challenge that arises in models that implement neural
development and in those that implement changes in experience
relates to the various parameter settings of the model. A common
argument against the usefulness of connectionist modeling and
computational modeling more generally is that any behavior can
be simulated with sufficient exploitation of free parameters (Rob-
erts & Pashler, 2000). In other words, it has been claimed that any
pattern of data can be modeled if free parameters are sufficiently
tweaked. A typical connectionist simulation involves the specifi-
cation of multiple parameters, such as the number of input, hidden,
and output units; initial weights; learning rate; and structure of the
input, to name just a few. These parameters can instantiate aspects
of neural processing or aspects of experience. Although a few
modelers have manipulated various model parameters to assess
their role in simulating infants’ behavior (e.g., Christiansen et al.,
1998; Quinn & Johnson, 1997; Rakison & Lupyan, 2008), this
kind of parameter checking is not performed systematically. This
may lead researchers to be skeptical about the role of these
parameters in network performance.

Parameters such as the network architecture, learning rate, and
weight decay determine how the network processes information
and can be particularly important in models that relate behavioral
changes to neural development. Some developmental simulations
have manipulated these parameters to demonstrate their effect on
the network’s performance. For example, Quinn and Johnson
(1997, 2000) manipulated the number of hidden units in a network
that modeled global- and basic-level categorization. Regardless of
the number of hidden units, the network consistently learned
global categories first, although when more hidden units were
used, basic categories emerged with less additional training. Sim-
ilarly, Rogers and McClelland (2004) demonstrated that the way
that the input units coded the information—either in a localist
manner, in which the activity of a single unit coded an object or a
property, or in a distributed manner, in which the activity of
multiple units coded an object or a property—did not significantly
impact the basic phenomena demonstrated by their simulations.
Thus, these manipulations show that performance often will re-
main qualitatively constant within a range of parameter values that
specify aspects of processing.

Similarly, the structure of the training set is a crucial parameter
in networks that employ an experience-based approach to instan-
tiating developmental change. A number of modelers have varied
the training set to demonstrate what features of the input are
necessary to match infant performance. Such demonstrations clar-
ify the central components of the training set that are implicated in
the mechanism of change. For example, Christiansen et al. (1998)
simulated word segmentation development with different types of

input cues: phonology, utterance boundaries, and stress. They
demonstrated that segmentation was best when all three cues were
provided to the network. Similarly, Mayor and Plunkett (2010)
showed that networks that received less joint attention experience,
or fewer copresentations of objects and their labels, acquired fewer
words throughout training. These manipulations show, not surpris-
ingly, that the nature of the training set can impact the model’s
ability to simulate infant data. Therefore, it is important to consider
whether the model’s experiences match the infant’s experiences.

Despite the impact of parameter values on model performance,
criticisms of connectionist networks that are based on single pa-
rameter values are not sound, for two reasons. The first reason is
that parameter values work in concert to determine the perfor-
mance of the network. A single parameter value has no meaning;
rather, the way the parameter interacts with others determines the
model’s performance. For example, the number of hidden units
must be balanced in relation to the amount and the complexity of
the training stimuli (Mareschal et al., 2000). Too many hidden
units will cause each unit to respond to a single training item,
which will prevent commonalities between items from being en-
coded, thereby reducing generalization. In contrast, too few hidden
units will not allow the network to generate differentiable repre-
sentations of all of the training items. This suggests that it is not the
single parameter of hidden unit number that is important for the
modeler to manipulate but instead how that parameter interacts
with the type of input provided to the network. Another example
of joint parameter effects on network behavior can be found in the
work of Rohde and Plaut (1999). They showed that effective
learning in a model of language acquisition relied on sufficiently
large initial random weights, which allowed for the input activa-
tions to be discriminable and for large error signals to be propa-
gated back through the network’s layers. When initial weights
were too small, the network required many more training trials to
achieve the same level of performance. This manipulation shows
that the model’s success does not rely on a single parameter of
initial weights. Instead, that parameter interacts with the amount of
training, which must be sufficiently large given the initial starting
weights. Thus, the criticism that tweaking of single parameters can
result in any pattern of performance is unfounded. In fact, achiev-
ing particular performance in a model is a challenging task, be-
cause it requires an understanding of the way in which the param-
eters interact to constrain the network’s behavior.

The second reason that networks should not be overly criticized
for parameter values is that the same problem is present in behav-
ioral research. Behavioral researchers make a number of decisions
during experimental design, such as which stimuli to use, the
length of presentation, and the manner of presentation. Decisions
typically are made to provide the infant with the most favorable
environment to display the effect of interest. Thus, the observed
behavior of the infant may be due to the specific settings of the
experiment. For example, Oakes and Ribar (2005) have shown that
the manner of stimulus presentation can influence infants’ ability
to form categories. They demonstrated that 4-month-olds formed
separate categories of cats and dogs only when the training exam-
ples were presented in pairs and not when the examples were
presented one at a time. In contrast, 6-month-olds could form
categories in both presentation modes. Thus, depending on the
parameters of stimuli presentation, different conclusions could be
drawn about 4-month-olds’ ability to categorize. These results
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show that just as some simulation results may rely on the specific
parameters of the model, behavioral results may also rely on the
specific parameters of the experimental procedure that generate a
favorable environment to perform a particular task. The key is to
determine the degree to which the infant’s or the network’s be-
havior can be generalized to other circumstances. Results should
generalize to some range of conceptual replications, but it would
be unreasonable to expect them to generalize to all experimental
contexts. For example, classic causal perception study results (e.g.,
Cohen & Oakes, 1993; Leslie & Keeble, 1987) should be found for
a range of objects that interact in a causal manner. However, the
speed at which the objects move could affect the results, because
at some point the events may be too fast for infants to process.
Similarly, a network’s performance should be consistent within a
range of parameter values. However, it would be unreasonable to
expect a network to maintain the same performance for every
single parameter value that can be imagined, particularly if param-
eter values are varied individually and their interdependence is
ignored.

Insufficient Research

Another common challenge across the two approaches is the
lack of neural or behavioral research on the target topic, which can
make it difficult for modelers to implement the correct neural
structures or to design the appropriate training set. With respect to
neural processing, although significant progress has been made,
our understanding of the infant brain is far from complete. The use
of near-infrared spectroscopy (NIRS) holds promise in illuminat-
ing infants’ information processing. However, this technique is
still in its initial stages in its use with infants, and improvement is
needed before it can provide definitive and useful information
about infants’ brains (Aslin, 2012).

With respect to children’s experiences, as we have discussed
above, CHILDES (MacWhinney, 2000) provides an extensive
database of children’s linguistic exposure. However, the database
does not provide information about the aspects of the environment
to which children pay attention and encode. For example, there is
insufficient information about the auditory features that are ex-
tracted by infants, which creates a challenge to model experiments
that provide auditory input, such as Marcus et al.’s (1999) rule-
learning experiment. As a result, different modelers adopted a
variety of ways to convert Marcus et al.’s behavioral stimuli into
network training events: Shultz and Bale (2001) coded them ac-
cording to a single sonority value; Christiansen and colleagues
(Christiansen et al., 2000; Christiansen & Curtin, 1999) coded
eight phonological features; and Sirois et al. (2000) used an arbi-
trary coding scheme unrelated to auditory processing. These var-
ious approaches make it difficult to determine which, if any,
coding scheme is the best approximation of infants’ auditory
processing. However, if each approach could generate different
predictions, further behavioral testing of these predictions could be
helpful for selecting the most appropriate way of coding the
auditory input. This illustrates a way in which modeling can spur
further theoretically relevant behavioral research.

More critically, as we discussed above, there is no extensive
database for children’s visual experiences. Consequently, model-
ers may adopt somewhat arbitrary assumptions about the amount
and distribution of infants’ experiences. For example, Lupyan and

Rakison (2006) simulated infants’ learning about animacy and
causality by exposing a network to a series of causal and noncausal
events. Of the causal events, 75% involved one animate and one
inanimate object and 25% involved two animate objects; of the
noncausal events, 50% involved one animate and one inanimate
object and 50% involved two animate objects. This distribution of
the different types of causal and noncausal events was based on
conjectures about infants’ experiences, because no empirical re-
search was available. However, infants’ experiences may be quite
different from this surmised distribution. For example, it is con-
ceivable that infants experience some causal events that involve
two inanimate objects, such as a rolling ball that knocks over
another toy. A model based on inferences about visual experience
rather than one based on concrete knowledge of experience may
output the same behavior as infants for different reasons, because
infants may rely on an entirely different set of experiences.

Two points are worth making that provide hope for surmounting
the challenge of inadequate research on early visual experiences.
First, instantiations of visual experience in connectionist networks
can be treated as explicit predictions that can be tested behavior-
ally. That is, if a model is trained on a particular set of visual
events and successfully replicates infants’ behavior, a prediction
can be made that these visual events are what infants see, attend to,
and encode. This prediction can, in turn, spur behavioral research
that examines infants’ attention and learning in real environments.
Second, progress has recently been made in recording and analyz-
ing infants’ early visual experiences through the use of head-
mounted video cameras and head-mounted eye trackers. For ex-
ample, Cicchino et al. (2011) analyzed data from a head-mounted
camera and found that infants see more instances of causality than
of self-propulsion. Similarly, Franchak et al. (2010) used a head-
mounted eye tracker to find that infants rarely look at their moth-
ers’ faces during interactions due to physical constraints on their
perspective. Therefore, it is apparent that there is an initiative to
catalog infants’ visual experiences as has already been done for
their linguistic experiences.

The examples presented above demonstrate that insufficient
behavioral research provides a significant challenge to generating
sound models of infants’ behavior, which can be overcome
through a symbiotic relationship among modeling, behavioral, and
neural research. Modeling work relies on empirical research to
support the theory about the mechanism of developmental change.
In turn, modeling can be a benefit to empirical research, because it
can identify areas in which empirical research is lacking and which
need more data before an effective theory of developmental
change can be developed.

Model Comparison

A final issue that arises in relation to connectionism is the
comparison of multiple models of the same phenomenon (e.g., the
numerous models of language acquisition, object permanence, or
learning of correlated attributes). The different connectionist mod-
els of the same topic all appear on the surface to be remarkably
successful at replicating the behavioral data. How does one com-
pare them to determine their contribution to our understanding of
development? In our view, model comparison involves two steps:
determining whether the models are different at the level of im-
plementation or at the level of theory and comparing their
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strengths and weaknesses. Use of this approach to model compar-
ison can be especially beneficial for the understanding of behav-
ioral data and for the advancement of developmental theory.

When multiple models of the same developmental phenomenon
are encountered, the first step is to address the level at which they
differ: implementation or theory. Models that differ in implemen-
tation agree on the theory behind the developmental change, but
this theory is instantiated in the models in different ways. In other
words, the causal mechanism that is thought to drive the develop-
mental change is the same across the models. For example, models
of the classic Younger and Cohen (1986) study by Gureckis and
Love (2004); Shultz and Cohen (2004), and Westermann and
Mareschal (2004) all base the development of infants’ ability to
learn to attribute correlations on the development of visual per-
ception. Thus, the models instantiate the same causal mechanism
that relates visual perception to correlational learning. However,
the models differ in their implementation of the changes in visual
perception. Gureckis and Love modeled improvements in visual
perception through decreased noise, such that stimuli appeared
more distinct over development. Shultz and Cohen raised the
degree to which the internal representation had to match the
presented stimulus, so that older networks perceived more details
of the stimuli. Finally, Westermann and Mareschal shrunk the
receptive fields of neurons in the visual system, which allowed the
neurons to be more fine-tuned to specific features of each stimulus.
Thus, the three models agree on the mechanism behind the emer-
gence of the ability to learn correlated attributes but build this
mechanism in different ways.

Models can also differ at the level of theory such that the
mechanism that is hypothesized to support development is differ-
ent between the models. For example, as discussed previously,
both Mareschal et al. (1999) and Munakata et al. (1997) modeled
the development of object permanence in infants, but the two
simulations differed with respect to the theory of why the devel-
opmental change occurred. Mareschal et al. adopted the theory that
object permanence develops when object identity and location
information are processed in an integrated manner. In contrast,
Munakata et al. attributed the change to infants’ developing ability
to maintain representations in memory. Therefore, these models
instantiate different mechanisms to drive development: either in-
tegration of two neural processing streams or the strengthening of
individual connections. Assessing the level at which models differ
is a critical first step in model comparison because it influences the
conclusions that can be drawn from the models. In particular, if
models differ in terms of theory and further model comparison
indicates the superiority of one model over another, this process of
model comparison could be helpful in disambiguating between
different theories of developmental change.

Once the level of difference has been determined, the second
step is to compare the models along several aspects: model as-
sumptions, extent of the modeled behavioral data, and novel pre-
dictions. To demonstrate these comparisons, we use two models of
Onishi and Baillargeon’s (2005) theory of mind tasks: Berthiaume,
Shultz, and Onishi (2013) and Van Overwalle (2010). In the
behavioral experiment, 15-month-old infants were habituated to an
event sequence in which an observer hid an object in one of two
boxes; then, they either saw that the object moved to the other box
or were absent when this occurred. In the test phase, infants were
tested with different events that assessed their expectations about

where the person should search for the object based on whether the
person was present or absent when the object moved.

First, we compare the extent to which the models’ assumptions
are backed by neural or behavioral evidence; if such evidence is
absent, there is reason to suspect that the mechanism by which
infants’ behavior is simulated is incorrect. The Berthiaume et al.
(2013) and Van Overwalle (2010) models employ different as-
sumptions regarding when learning occurs during an experiment.
In the former, learning occurred only during the general experience
prior to the experiment, and no learning during an experimental
habituation phase was simulated. In the latter, learning occurred
throughout all stages, including the test phase. It would be difficult
to argue that learning does not occur during an experiment, be-
cause the habituation procedure implies that the child’s attention
decreases as a result of learning. Thus, based on this assumption,
Van Overwalle’s model may be better grounded than Berthiaume
et al.’s.

Second, we compare the extent to which the models yield results
that match the observed behavioral patterns. In the case of the
Berthiaume et al. (2013) model, there is a match between the
model data and the behavioral results with respect to the overall
pattern but not the magnitudes of the effects. In particular, infants
show about equal differences in looking to correct and incorrect
reaches regardless of whether the person’s beliefs are true or false.
In contrast, the model displays a more robust true belief than false
belief effect: The difference in network error (a proxy for looking
time) between correct and incorrect reaches is much greater when
the person’s beliefs are true than when they are false. Van Over-
walle’s model (2010) of the same behavioral data provides a closer
match of the overall pattern and the individual difference magni-
tudes. Berthiaume et al. do not comment on the discrepancy in
magnitude between their data and the infant data. Without a
principled reason for this magnitude difference, this imperfect
match puts the model at a disadvantage compared to the Van
Overwalle model.

Finally, we compare the predictions, if any, that each model
makes. The predictions provide a way to falsify the model: If they
are not supported by further behavioral (or neural) research, this
suggests that revision of the model is needed. Van Overwalle’s
(2010) model learns the associations between the object, the hiding
locations, and the observer. It predicts that the saliency of the
observer can affect performance, such that if the observer is not
particularly salient, the observer’s beliefs will be overridden by the
visual information about the actual hiding location of the object. In
contrast, the Berthiaume et al. (2013) model relies on the infant’s
real-world experience that people tend to have more true than false
beliefs (i.e., people’s beliefs tend to align with reality more often
than not). If false beliefs are rare, according to the model, younger
infants initially should base their expectations on the state of the
world rather than on the observer’s beliefs and should fail Onishi
and Baillargeon’s (2005) task at a younger age than that tested in
the experiment. Although the two models do not offer predictions
that are in opposition to each other, they provide new avenues for
assessing which model, if any, appropriately simulates infant be-
havior. To our knowledge, Van Overwalle’s prediction has not
been pursued behaviorally. Berthiaume et al.’s prediction that
younger infants should fail the task is inconsistent with behavioral
evidence that 13-month-olds succeed in the task (Surian, Caldi, &
Sperber, 2007); however, it is conceivable that it could be sup-
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ported if infants younger than 13 months were tested. Based on a
more founded assumption about learning and a closer fit to the
behavioral data, it appears that the Van Overwalle model has an
advantage over the Berthiaume et al. model. However, it remains
to be seen whether the critical prediction of the model would be
supported by behavioral data. Furthermore, our comparison of the
assumptions and data fit was limited in the interest of providing a
brief example that illustrates the main points of the two. Prior to
definitively favoring one model over another, a more rigorous
analysis of these aspects of models must be conducted.

Comparing multiple models of the same phenomenon is chal-
lenging yet necessary for the understanding of the behavioral data
and for the advancement of theory. To be clear, we do not want to
imply that there is always a unilaterally correct model. Connec-
tionist modeling should be viewed as a continuous exploration of
the various components that are hypothesized to contribute to a
particular behavior (McClelland, 2009). With respect to model
comparison, this means that in all likelihood, all competing models
of the same phenomenon have some correct and incorrect compo-
nents. A comparison of these can highlight the areas where each
model is most successful and can spur further modeling efforts that
take advantage of these successes.

Summary

Connectionist models of development typically encounter sev-
eral challenges: the need to balance central and peripheral com-
ponents of the behavior, the role of specific simulation parameters,
inadequate empirical research to support a simulation, and com-
peting theoretical accounts. Before a developmental change can be
modeled, the modeler must specify the theory of change to be
instantiated in the network. Components that are central to this
theory—those that are causally related to the change—should be
necessary and sufficient to simulate the change in behavior and
therefore be implemented in the model. Peripheral components are
typically omitted, because they may obscure the mechanism by
which the change occurs in the model. Specifying the theory of
change and its central and peripheral components can be particu-
larly challenging if there is insufficient behavioral research on the
topic being modeled. In such cases, models can be beneficial for
behavioral researchers because they can illuminate areas in
need of further study to adequately formulate a theory of
developmental change. Although models often are criticized for
exploiting too many free parameters, these criticisms ignore the
fact that behavioral results rarely generalize to all possible
experimental contexts, thereby illustrating a seemingly similar
problem. The critical point in relation to both behavioral work
and modeling work is that some range of generalization should
be expected, but expecting full generalization is unreasonable.
Finally, researchers are sometimes faced with multiple models
of the same phenomenon, which can make it difficult to deter-
mine which account is most accurate. In our view, it is likely that
every account possesses correct and incorrect components. How-
ever, by comparing models on their assumptions, data fit, and
predictions, it is possible to identify areas of success and failure,
which is beneficial for the theoretical understanding of behavior
and for further modeling efforts.

Conclusion

Developmental researchers primarily ask questions related to
what develops, when it develops, and how it develops. Connec-
tionist models can be helpful in answering these questions and are
a particularly useful resource in studying development within the
first 2 years of life due to the limitations that the participants’
young age imposes on behavioral research.

Two main approaches have been used to simulate behavioral
changes in a connectionist network: those based on neural devel-
opments and those based on experiential changes. It should be
noted that although this review has presented the two approaches
in separate sections, the intent has not been to suggest that only one
or the other operates in theories and models of development.
Rather, this was done to clarify the different approaches to mod-
eling and to make better contact with the perspectives adopted by
many developmental researchers. The first approach adopts a
theoretical stance that behavioral changes are a product of neural
changes. Accordingly, models that employ this approach often
instantiate developmental changes in perception, integrated pro-
cessing, memory, and neural plasticity to simulate changes in
behavior. Although many of these changes may be occurring
simultaneously in infancy, modelers often include only those
changes that are implicated in the mechanism of development to
increase transparency. As a result, many modelers opt for admin-
istering changes in neural processing by hand instead of having the
change emerge naturally in the system, because the ultimate inter-
est is in the mechanism that links neural and behavioral changes,
not the mechanism by which the neural development itself occurs.
The second approach that has been used adopts the perspective that
behavioral changes are due to either a quantitative or a qualitative
change in experience as infants get older. Development is simu-
lated via additional training epochs or a change in the training
events. The importance of the training set creates a pressing need
for more accurate empirical data on infants’ experiences. Thus far,
many modelers have relied on assumptions about what infants may
experience because the relevant data have not been available,
particularly in the domain of visual experience. Similarly, model-
ers employing a neural-based approach often face inadequate re-
search on neural development throughout infancy. Furthermore,
existing research is often conducted on nonhuman primates or
other animals, which can raise questions about the degree to which
the results can be employed in models of human cognition.

A central challenge to both approaches has been the balance
between creating a model that includes what is known currently
about development and one that is simple enough to be useful to
the field. This challenge has been met by using a cutoff criterion
and including only those components that are directly involved in
the mechanism of behavioral change. This approach ensures that
models based on changes in neural processing do not incorporate
all aspects of infant neural development but only those that are
hypothesized to cause the behavioral change. Similarly, it ensures
that models based on experience are not exposed to all daily events
and objects that infants may encounter but only those that directly
impact the change in behavior. Following this cutoff criterion also
would be beneficial for making models more generally under-
standable. Connectionist networks have been criticized for being
opaque to nonexperts (Klahr, 2004). However, if all model com-
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ponents are clearly identified and grounded in developmental
theory, models would become intelligible to a wider audience.

Connectionist models have thus far provided numerous contri-
butions to the construction and revision of developmental theories.
For example, connectionist models have provided coherent ac-
counts for the presence of critical periods in development (Mc-
Clelland et al., 1999; Zevin & Seidenberg, 2002) and the trade-offs
that emerge in the specialization of different brain areas (McClel-
land et al., 1995; O’Reilly & Munakata, 2000). Such contributions
to theory building have primarily emerged from novel predictions
made by connectionist models, their use in explicitly testing mech-
anisms of change, and the unification of disparate behavioral
results in a single theoretical framework based on principles of
associative learning.

However, behavioral researchers have not always made use of
these potential benefits of connectionist models. For example, it
took several years for an explicit prediction made by Munakata’s
(1998) model of the A-not-B task to be tested behaviorally (Clear-
field et al., 2006), despite the prediction’s potential benefit for the
theoretical understanding of memory and perseveration. In our
view, this lack of interchange between modelers and behavioral
researchers is in part due to the hesitance of the latter toward
modeling. For example, behavioral researchers have been critical
of the starting states of connectionist networks (Oakes et al., 2009).
If models are viewed as adopting arbitrary starting states that are
not tightly linked with behavioral work, it is not unreasonable for
researchers to be skeptical about the model’s usefulness. However,
as connectionist networks become more closely linked to devel-
opmental theories, some of these concerns may be alleviated. In
particular, unifying frameworks that use similar structures to
model a range of findings provide a consistent set of starting and
processing components, which can suggest a stable correspon-
dence with behavioral data. This may make it more likely that
behavioral researchers will make use of the insights offered by
connectionist networks.

In addition to the contributions that have already been made by
connectionism, what can we expect from these models in the
future? We anticipate that over time models will come to have a
better correspondence to infants and that more models will be
developmental models. The ability of connectionist networks to
more closely approximate infants will emerge from two sources.
First, computational power will improve, enabling network archi-
tectures to be more similar to the brain and allowing for the use of
larger training sets that are more representative of real experiences
(McClelland, 2009). That is not to say that the principle of bal-
ancing simplicity with neural plausibility will be abandoned; mod-
elers will still strive to include only the central components im-
plicated in the mechanism of change. Rather, the increase in
computational power will allow for more detail in the specification
of this mechanism. For example, it may be possible to simulate
behavior starting at the level of interaction between individual
neurons rather than neural populations. Second, more research will
be conducted that will specify in greater detail the environments of
infants and children and will provide data on what events are
commonly experienced, perceived, and encoded. Such research
will require modelers to make fewer unfounded assumptions about
infants’ experiences. This will work in concert with increased
computational power, such that developmental connectionist mod-

els will become even better approximations of children and allow
for more precise predictions and theory testing.

We also anticipate that more simulations of infant behavioral
data will be conducted from a developmental perspective. The
current review focused only on models of development. Conse-
quently, it did not address the numerous nondevelopmental models
that simulate infant behavior at a single point in time and do not
explore its change over time, typically because the model simu-
lates behavioral data from a study that addressed only a single age.
For example, models of infants’ categorization of cats and dogs
(e.g., French et al., 2004; Mareschal et al., 2000, 2002) explored
only the effects of various experimental manipulations at a single
age, as did the behavioral studies on which the models were based.
However, there is no reason why models should study a single age
group. They can be extended to make novel developmental pre-
dictions and provide added value to the underlying behavioral
work that did not examine developmental change. We anticipate
that more modelers will take advantage of this, because it is a
cost-effective way of motivating new developmental experiments.
Furthermore, we expect that the developmental trajectory for a
given behavior will be extended beyond infancy to include the
entire spectrum of change from infancy to adulthood. This would
allow researchers to understand if the changes that are observed
over a few months in infancy and those that are seen between
infancy and adulthood result from same the mechanism. If the
same mechanism underlies these changes, the same simulation
should produce infant and adult behavior. In contrast, if another
mechanism is needed to bring infants’ performance to adult com-
petence levels, the same model could not produce infant and adult
behavior without significant modifications. One example of this in
the existing modeling literature is Gureckis and Love’s (2004)
model of infants’ category learning, which adapted a network
architecture that had been used previously to model adult category
learning. The model was successful in simulating infants’ behav-
ior, which suggested that a common mechanism may operate
during category learning throughout the life span. This type of
modeling that uses the same mechanism to model child and adult
behavior has been an active area of research in other modeling
approaches as well (e.g., probabilistic modeling: Kemp & Tenen-
baum, 2008; dynamic field theory: Perone et al., 2011).

The focus in this article has been on connectionist models of
development within the first 2 years of life. Despite this narrowly
defined topic, many of the arguments presented in this article can
be of interest to a more general audience. With respect to the two
approaches of modeling development, they are not unique to early
development and can be applied to model age-related changes at
any time point. Neural-based approaches to modeling development
that simulate neurogenesis, synaptogenesis, and synaptic pruning
can be employed throughout the life span, because these neural
changes occur past the first 2 years of life (Casey et al., 2005;
Huttenlocher & Dabholkar, 1997; Stiles & Jernigan, 2010). Fur-
thermore, the principles behind modeling a process such as neu-
rogenesis can be applied to model the reverse process of neural
death that may occur in the elderly. Similarly, experience-based
approaches to modeling development are not age restricted. Stud-
ies of expertise in adulthood often focus on the role of experience
(e.g., Rossion, Gauthier, Goffaux, Tarr, & Crommelinck, 2002);
these studies could benefit from insights generated by experience-
based models of infant behavior.
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Likewise, the common challenges reviewed in this article can
arise in nondevelopmental models; therefore, some of the solutions
presented can be of use to a broad range of behavioral researchers
and modelers, particularly those interested in mechanistic expla-
nations. For example, the identification of the central and periph-
eral components of a behavior during network construction must
be made for all simulations, regardless of the age that is modeled.
Similarly, insufficient research can hamper modeling of behaviors
that occur throughout the life span. This may lead modelers to
develop training sets that do not reflect accurately the experiences
of human participants. However, such cases can also be opportu-
nities to explore the consequences of the developed training set
(McClelland, 2009). That is, if the modeler uses a training set that
is based on some conjectures about participants’ experience and
the model successfully simulates behavioral data, this could sug-
gest that the training set does, in fact, reflect real-world experience.

Most importantly, the contributions of connectionist models to
developmental research can be extended to behavioral research
more generally. A connectionist model that successfully simulates
behavioral data provides a concrete instantiation of the mechanism
that underlies that behavior. This instantiation can be used to
generate novel testable predictions, which can be a time- and
cost-efficient way to explore new research topics that can provide
significant contributions to the theoretical understanding of a tar-
get behavioral phenomenon.

In sum, our goals in this article were twofold: first, to demon-
strate the added value of connectionist modeling to behavioral
research in infant development, and second, to provide concrete
examples of how connections networks are used to model devel-
opment. In our view, the benefit of connectionist modeling can be
enhanced significantly if modelers and developmental scientists
work in concert on the key questions in early development. Mod-
elers can bring to the table the novel predictions that models can
generate and can help to refine existing theoretical accounts of
development. However, their ability to do so relies on develop-
mental scientists’ exploration of relevant behavioral questions,
such as those related to early experience. If both sides meet these
expected and practical contributions, developmental science stands
to make strong advances in the theories of early development.
Furthermore, this symbiotic relationship between behavioral sci-
entists and modelers need not be limited to the study of infant
development and can be beneficial for the study of behavior
throughout the life span.
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